Works about SOLID state batteries
Results: 1253
Novel Amorphous Nitride‐Halide Solid Electrolytes with Enhanced Performance for All‐Solid‐State Batteries.
- Published in:
- Angewandte Chemie, 2025, v. 137, n. 3, p. 1, doi. 10.1002/ange.202415847
- By:
- Publication type:
- Article
Ceramic-Rich Composite Separators for High-Voltage Solid-State Batteries.
- Published in:
- Batteries, 2025, v. 11, n. 2, p. 42, doi. 10.3390/batteries11020042
- By:
- Publication type:
- Article
Nanomaterials for Energy Storage Systems—A Review.
- Published in:
- Molecules, 2025, v. 30, n. 4, p. 883, doi. 10.3390/molecules30040883
- By:
- Publication type:
- Article
Multi‐Scale Characterization Techniques for Polymer‐Based Solid‐State Lithium Batteries.
- Published in:
- Macromolecular Chemistry & Physics, 2023, v. 224, n. 3, p. 1, doi. 10.1002/macp.202200351
- By:
- Publication type:
- Article
Dielectric Relaxation Behavior of a Poly(ethylene carbonate)-Lithium Bis-(trifluoromethanesulfonyl) Imide Electrolyte.
- Published in:
- Macromolecular Chemistry & Physics, 2015, v. 216, n. 15, p. 1660, doi. 10.1002/macp.201500125
- By:
- Publication type:
- Article
Exploring Chemical and Electrochemical Limitations in Sulfide Solid State Electrolytes: A Critical Review on Current Status and Manufacturing Scope.
- Published in:
- Chemistry - A European Journal, 2024, v. 30, n. 71, p. 1, doi. 10.1002/chem.202402510
- By:
- Publication type:
- Article
Engineering Detrimental Functional Groups in Conductive Additives Toward High-Performance All-Solid-State Batteries.
- Published in:
- Chemistry - A European Journal, 2024, v. 30, n. 22, p. 1, doi. 10.1002/chem.202400074
- By:
- Publication type:
- Article
Electric Double Layer Regulator Design through a Functional Group Assembly Strategy towards Long‐Lasting Zinc Metal Batteries.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 30, p. 1, doi. 10.1002/ange.202405209
- By:
- Publication type:
- Article
Reviving Cost‐Effective Organic Cathodes in Halide‐Based All‐Solid‐State Lithium Batteries.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 30, p. 1, doi. 10.1002/ange.202403331
- By:
- Publication type:
- Article
Zwitterionic Cellulose‐Based Polymer Electrolyte Enabled by Aqueous Solution Casting for High‐Performance Solid‐State Batteries.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 30, p. 1, doi. 10.1002/ange.202400477
- By:
- Publication type:
- Article
Interface‐Targeting Carrier‐Catalytic Integrated Design Contributing to Lithium Dihalide‐Rich SEI toward High Interface Stability for Long‐Life Solid‐State Lithium‐Metal Batteries.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 21, p. 1, doi. 10.1002/ange.202401576
- By:
- Publication type:
- Article
Tuning the Electrolyte and Interphasial Chemistry for All‐Climate Sodium‐ion Batteries.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 21, p. 1, doi. 10.1002/ange.202401051
- By:
- Publication type:
- Article
Porous Ceramic Metal‐Based Flow Battery Composite Membrane.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 19, p. 1, doi. 10.1002/ange.202401558
- By:
- Publication type:
- Article
Interface‐Compatible Gel‐Polymer Electrolyte Enabled by NaF‐Solubility‐Regulation toward All‐Climate Solid‐State Sodium Batteries.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 18, p. 1, doi. 10.1002/ange.202402245
- By:
- Publication type:
- Article
The Versatile Establishment of Charge Storage in Polymer Solid Electrolyte with Enhanced Charge Transfer for LiF‐Rich SEI Generation in Lithium Metal Batteries.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 18, p. 1, doi. 10.1002/ange.202320149
- By:
- Publication type:
- Article
A High‐Rate and Long‐Life Sodium Metal Battery Based on a NaB<sub>3</sub>H<sub>8</sub> ⋅ xNH<sub>3</sub>@NaB<sub>3</sub>H<sub>8</sub> Composite Solid‐State Electrolyte.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 17, p. 1, doi. 10.1002/ange.202401480
- By:
- Publication type:
- Article
Build a High‐Performance All‐Solid‐State Lithium Battery through Introducing Competitive Coordination Induction Effect in Polymer‐Based Electrolyte.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 16, p. 1, doi. 10.1002/ange.202400960
- By:
- Publication type:
- Article
Cubic Iodide Li<sub>x</sub>YI<sub>3+x</sub> Superionic Conductors through Defect Manipulation for All‐Solid‐State Li Batteries.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 12, p. 1, doi. 10.1002/ange.202316360
- By:
- Publication type:
- Article
Dynamic Monkey Bar Mechanism of Superionic Li‐ion Transport in LiTaCl<sub>6</sub>.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 12, p. 1, doi. 10.1002/ange.202315628
- By:
- Publication type:
- Article
Lithiophilic Covalent Organic Framework as Anode Coating for High‐Performance Lithium Metal Batteries.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 11, p. 1, doi. 10.1002/ange.202319355
- By:
- Publication type:
- Article
Progress and Perspectives on the Development of Pouch‐Type Lithium Metal Batteries.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 7, p. 1, doi. 10.1002/ange.202307802
- By:
- Publication type:
- Article
Polyoxometalate Li<sub>3</sub>PW<sub>12</sub>O<sub>40</sub> and Li<sub>3</sub>PMo<sub>12</sub>O<sub>40</sub> Electrolytes for High‐energy All‐solid‐state Lithium Batteries.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 5, p. 1, doi. 10.1002/ange.202317949
- By:
- Publication type:
- Article
A Fluorinated Solid‐state‐electrolyte Interface Layer Guiding Fast Zinc‐ion Oriented Deposition in Aqueous Zinc‐ion Batteries.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 4, p. 1, doi. 10.1002/ange.202316904
- By:
- Publication type:
- Article
Polyimide Compounds For Post‐Lithium Energy Storage Applications.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 50, p. 1, doi. 10.1002/ange.202306904
- By:
- Publication type:
- Article
Stabilizing Solid‐state Lithium Metal Batteries through In Situ Generated Janus‐heterarchical LiF‐rich SEI in Ionic Liquid Confined 3D MOF/Polymer Membranes.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 39, p. 1, doi. 10.1002/ange.202304947
- By:
- Publication type:
- Article
Efficiencies of Various in situ Polymerizations of Liquid Electrolytes and the Practical Implications for Quasi Solid‐state Batteries.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 38, p. 1, doi. 10.1002/ange.202309613
- By:
- Publication type:
- Article
Polymers with Intrinsic Microporosity as Solid Ion Conductors for Solid‐State Lithium Batteries.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 37, p. 1, doi. 10.1002/ange.202308837
- By:
- Publication type:
- Article
Supramolecular Polymer Ion Conductor with Weakened Li Ion Solvation Enables Room Temperature All‐Solid‐State Lithium Metal Batteries.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 35, p. 1, doi. 10.1002/ange.202306948
- By:
- Publication type:
- Article
Dynamic Zn/Electrolyte Interphase and Enhanced Cation Transfer of Sol Electrolyte for All‐Climate Aqueous Zinc Metal Batteries.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 34, p. 1, doi. 10.1002/ange.202308068
- By:
- Publication type:
- Article
Enabling the Operation of Highly Compatible LiI‐3‐Hydroxypropionitrile Small‐Molecule Solid‐State Electrolytes in Lithium Metal Batteries via Stepped‐Amorphization Strategy.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 31, p. 1, doi. 10.1002/ange.202305004
- By:
- Publication type:
- Article
Covalent Organic Framework with Multi‐Cationic Molecular Chains for Gate Mechanism Controlled Superionic Conduction in All‐Solid‐State Batteries.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 25, p. 1, doi. 10.1002/ange.202302505
- By:
- Publication type:
- Article
Understanding Electrochemical Reaction Mechanisms of Sulfur in All‐Solid‐State Batteries through Operando and Theoretical Studies **.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 20, p. 1, doi. 10.1002/ange.202302363
- By:
- Publication type:
- Article
Solid‐Electrolyte Interphase Chemistries Towards High‐Performance Aqueous Zinc Metal Batteries.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 13, p. 1, doi. 10.1002/ange.202218466
- By:
- Publication type:
- Article
Halide Layer Cathodes for Compatible and Fast‐Charged Halides‐Based All‐Solid‐State Li Metal Batteries.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 13, p. 1, doi. 10.1002/ange.202217081
- By:
- Publication type:
- Article
In Situ Polymerized 1,3‐Dioxolane Electrolyte for Integrated Solid‐State Lithium Batteries.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 12, p. 1, doi. 10.1002/ange.202218621
- By:
- Publication type:
- Article
Lithium‐ion Mobility in Li<sub>6</sub>B<sub>18</sub>(Li<sub>3</sub>N) and Li Vacancy Tuning in the Solid Solution Li<sub>6</sub>B<sub>18</sub>(Li<sub>3</sub>N)<sub>1−x</sub>(Li<sub>2</sub>O)<sub>x</sub>.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 10, p. 1, doi. 10.1002/ange.202213962
- By:
- Publication type:
- Article
Electrochemical Reactivation of Dead Li<sub>2</sub>S for Li−S Batteries in Non‐Solvating Electrolytes.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 9, p. 1, doi. 10.1002/ange.202218803
- By:
- Publication type:
- Article
A Stable Solid Polymer Electrolyte for Lithium Metal Battery with Electronically Conductive Fillers.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 7, p. 1, doi. 10.1002/ange.202217538
- By:
- Publication type:
- Article
Impact of the Chlorination of Lithium Argyrodites on the Electrolyte/Cathode Interface in Solid‐State Batteries.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 7, p. 1, doi. 10.1002/ange.202213228
- By:
- Publication type:
- Article
Grain Boundary Electronic Insulation for High‐Performance All‐Solid‐State Lithium Batteries.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 5, p. 1, doi. 10.1002/ange.202215680
- By:
- Publication type:
- Article
A Shuttle‐Free Solid‐State Cu−Li Battery Based on a Sandwich‐Structured Electrolyte.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 3, p. 1, doi. 10.1002/ange.202214117
- By:
- Publication type:
- Article
Large‐area Free‐standing Metalloporphyrin‐based Covalent Organic Framework Films by Liquid‐air Interfacial Polymerization for Oxygen Electrocatalysis.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 1, p. 1, doi. 10.1002/ange.202214449
- By:
- Publication type:
- Article
Organic Electrolyte Design for Rechargeable Batteries: From Lithium to Magnesium.
- Published in:
- Angewandte Chemie, 2022, v. 134, n. 52, p. 1, doi. 10.1002/ange.202214054
- By:
- Publication type:
- Article
In Situ Formation of Nitrogen‐Rich Solid Electrolyte Interphase and Simultaneous Regulating Solvation Structures for Advanced Zn Metal Batteries.
- Published in:
- Angewandte Chemie, 2022, v. 134, n. 52, p. 1, doi. 10.1002/ange.202212839
- By:
- Publication type:
- Article
Revealing the High Salt Concentration Manipulated Evolution Mechanism on the Lithium Anode in Quasi‐Solid‐State Lithium‐Sulfur Batteries.
- Published in:
- Angewandte Chemie, 2022, v. 134, n. 52, p. 1, doi. 10.1002/ange.202212744
- By:
- Publication type:
- Article
The Anionic Chemistry in Regulating the Reductive Stability of Electrolytes for Lithium Metal Batteries.
- Published in:
- Angewandte Chemie, 2022, v. 134, n. 52, p. 1, doi. 10.1002/ange.202210859
- By:
- Publication type:
- Article
Correlation between Electrolyte Chemistry and Solid Electrolyte Interphase for Reversible Ca Metal Anodes.
- Published in:
- Angewandte Chemie, 2022, v. 134, n. 50, p. 1, doi. 10.1002/ange.202214796
- By:
- Publication type:
- Article
Surface Degradation of Single‐crystalline Ni‐rich Cathode and Regulation Mechanism by Atomic Layer Deposition in Solid‐State Lithium Batteries.
- Published in:
- Angewandte Chemie, 2022, v. 134, n. 48, p. 1, doi. 10.1002/ange.202211626
- By:
- Publication type:
- Article
Direct Observation of Li‐Ion Transport Heterogeneity Induced by Nanoscale Phase Separation in Li‐rich Cathodes of Solid‐State Batteries.
- Published in:
- Angewandte Chemie, 2022, v. 134, n. 40, p. 1, doi. 10.1002/ange.202209626
- By:
- Publication type:
- Article
Optimize Lithium Deposition at Low Temperature by Weakly Solvating Power Solvent.
- Published in:
- Angewandte Chemie, 2022, v. 134, n. 39, p. 1, doi. 10.1002/ange.202207927
- By:
- Publication type:
- Article