Works matching IS 14467887 AND DT 2013 AND VI 94 AND IP 3
1
- Journal of the Australian Mathematical Society, 2013, v. 94, n. 3, p. b1, doi. 10.1017/S144678871300044X
- Article
2
- Journal of the Australian Mathematical Society, 2013, v. 94, n. 3, p. f1, doi. 10.1017/S1446788713000438
- Article
3
- Journal of the Australian Mathematical Society, 2013, v. 94, n. 3, p. 375, doi. 10.1017/S1446788713000141
- Article
4
- Journal of the Australian Mathematical Society, 2013, v. 94, n. 3, p. 348, doi. 10.1017/S1446788713000086
- GRANDIS, M.;
- JANELIDZE, G.;
- MÁRKI, L.
- Article
5
- Journal of the Australian Mathematical Society, 2013, v. 94, n. 3, p. 304, doi. 10.1017/S1446788713000062
- Article
6
- Journal of the Australian Mathematical Society, 2013, v. 94, n. 3, p. 417, doi. 10.1017/S1446788713000050
- Article
7
- Journal of the Australian Mathematical Society, 2013, v. 94, n. 3, p. 397, doi. 10.1017/S1446788713000049
- Article
8
- Journal of the Australian Mathematical Society, 2013, v. 94, n. 3, p. 362, doi. 10.1017/S1446788712000560
- Article
9
- Journal of the Australian Mathematical Society, 2013, v. 94, n. 3, p. 321, doi. 10.1017/S1446788712000572
- Article
10
- Journal of the Australian Mathematical Society, 2013, v. 94, n. 3, p. 385, doi. 10.1017/S1446788713000037
- Article
11
- Journal of the Australian Mathematical Society, 2013, v. 94, n. 3, p. 289, doi. 10.1017/S1446788712000535
- ALAVI, S. H.;
- DANESHKHAH, A.;
- TONG-VIET, H. P.;
- WAKEFIELD, T. P.
- Article