Works matching IS 14322994 AND DT 2020 AND VI 91 AND IP 1
1
- Mathematical Methods of Operations Research, 2020, v. 91, n. 1, p. 25, doi. 10.1007/s00186-020-00707-9
- Crespi, Giovanni Paolo;
- Mastrogiacomo, Elisa
- Article
2
- 2020
- Hamel, Andreas H;
- Löhne, Andreas
- Editorial
3
- Mathematical Methods of Operations Research, 2020, v. 91, n. 1, p. 175, doi. 10.1007/s00186-019-00695-5
- Han, Yu;
- Zhang, Kai;
- Huang, Nan-jing
- Article
4
- Mathematical Methods of Operations Research, 2020, v. 91, n. 1, p. 159, doi. 10.1007/s00186-019-00686-6
- Article
5
- Mathematical Methods of Operations Research, 2020, v. 91, n. 1, p. 5, doi. 10.1007/s00186-019-00681-x
- Baes, Michel;
- Munari, Cosimo
- Article
6
- Mathematical Methods of Operations Research, 2020, v. 91, n. 1, p. 117, doi. 10.1007/s00186-019-00679-5
- Ansari, Qamrul Hasan;
- Hamel, Andreas H;
- Sharma, Pradeep Kumar
- Article
7
- Mathematical Methods of Operations Research, 2020, v. 91, n. 1, p. 55, doi. 10.1007/s00186-019-00677-7
- Article
8
- Mathematical Methods of Operations Research, 2020, v. 91, n. 1, p. 137, doi. 10.1007/s00186-019-00676-8
- Article
9
- Mathematical Methods of Operations Research, 2020, v. 91, n. 1, p. 73, doi. 10.1007/s00186-019-00675-9
- Article
10
- Mathematical Methods of Operations Research, 2020, v. 91, n. 1, p. 89, doi. 10.1007/s00186-019-00661-1
- Jiménez, B.;
- Novo, V.;
- Vílchez, A.
- Article