Works matching IS 03436993 AND DT 2016 AND VI 38 AND IP 3
1
- Mathematical Intelligencer, 2016, v. 38, n. 3, p. 85, doi. 10.1007/s00283-015-9605-2
- Article
2
- Mathematical Intelligencer, 2016, v. 38, n. 3, p. 14, doi. 10.1007/s00283-015-9612-3
- Article
3
- Mathematical Intelligencer, 2016, v. 38, n. 3, p. 11, doi. 10.1007/s00283-015-9609-y
- Article
4
- Mathematical Intelligencer, 2016, v. 38, n. 3, p. 98, doi. 10.1007/s00283-016-9619-4
- Article
5
- Mathematical Intelligencer, 2016, v. 38, n. 3, p. 41, doi. 10.1007/s00283-016-9672-z
- Article
6
- Mathematical Intelligencer, 2016, v. 38, n. 3, p. 24, doi. 10.1007/s00283-016-9629-2
- Article
7
- Mathematical Intelligencer, 2016, v. 38, n. 3, p. 91, doi. 10.1007/s00283-016-9633-6
- Article
8
- Mathematical Intelligencer, 2016, v. 38, n. 3, p. 1, doi. 10.1007/s00283-016-9637-2
- Article
9
- Mathematical Intelligencer, 2016, v. 38, n. 3, p. 52, doi. 10.1007/s00283-016-9650-5
- Article
10
- Mathematical Intelligencer, 2016, v. 38, n. 3, p. 81, doi. 10.1007/s00283-016-9627-4
- Article
11
- Mathematical Intelligencer, 2016, v. 38, n. 3, p. 30, doi. 10.1007/s00283-016-9654-1
- Article
12
- Mathematical Intelligencer, 2016, v. 38, n. 3, p. 94, doi. 10.1007/s00283-015-9593-2
- Article
13
- Mathematical Intelligencer, 2016, v. 38, n. 3, p. 6, doi. 10.1007/s00283-016-9652-3
- Diaco, Nicholas;
- Khovanova, Tanya
- Article
14
- Mathematical Intelligencer, 2016, v. 38, n. 3, p. 96, doi. 10.1007/s00283-016-9653-2
- Article
15
- Mathematical Intelligencer, 2016, v. 38, n. 3, p. 69, doi. 10.1007/s00283-016-9656-z
- Article
16
- Mathematical Intelligencer, 2016, v. 38, n. 3, p. 20, doi. 10.1007/s00283-016-9655-0
- Article
17
- Mathematical Intelligencer, 2016, v. 38, n. 3, p. 61, doi. 10.1007/s00283-016-9663-0
- Katz, Eugene;
- Jin, Bih-Yaw
- Article
18
- Mathematical Intelligencer, 2016, v. 38, n. 3, p. 78, doi. 10.1007/s00283-016-9659-9
- Article