Works matching IS 03436993 AND DT 2013 AND VI 35 AND IP 3
1
- Mathematical Intelligencer, 2013, v. 35, n. 3, p. 88, doi. 10.1007/s00283-013-9374-8
- Article
2
- Mathematical Intelligencer, 2013, v. 35, n. 3, p. 54, doi. 10.1007/s00283-013-9387-3
- Article
3
- Mathematical Intelligencer, 2013, v. 35, n. 3, p. 8, doi. 10.1007/s00283-013-9366-8
- Article
4
- Mathematical Intelligencer, 2013, v. 35, n. 3, p. 64, doi. 10.1007/s00283-013-9394-4
- Ciesielska, Danuta;
- Ciesielski, Krzysztof
- Article
5
- Mathematical Intelligencer, 2013, v. 35, n. 3, p. 2, doi. 10.1007/s00283-013-9373-9
- Conway, John;
- Shipman, Joseph
- Article
6
- Mathematical Intelligencer, 2013, v. 35, n. 3, p. 34, doi. 10.1007/s00283-013-9361-0
- Article
7
- Mathematical Intelligencer, 2013, v. 35, n. 3, p. 36, doi. 10.1007/s00283-013-9382-8
- Deni˙z, Ali˙;
- Koçak, Şahi˙n;
- Özdemi˙r, Yunus;
- Üreyen, Adem
- Article
8
- Mathematical Intelligencer, 2013, v. 35, n. 3, p. 24, doi. 10.1007/s00283-013-9397-1
- Article
9
- 2013
- Wills, Jörg;
- Huylebrouck, Dirk
- Letter
10
- Mathematical Intelligencer, 2013, v. 35, n. 3, p. 9, doi. 10.1007/s00283-013-9370-z
- Article
11
- Mathematical Intelligencer, 2013, v. 35, n. 3, p. 74, doi. 10.1007/s00283-013-9378-4
- Article
12
- Mathematical Intelligencer, 2013, v. 35, n. 3, p. 76, doi. 10.1007/s00283-013-9377-5
- Article
13
- Mathematical Intelligencer, 2013, v. 35, n. 3, p. 21, doi. 10.1007/s00283-012-9358-0
- Article
14
- Mathematical Intelligencer, 2013, v. 35, n. 3, p. 80, doi. 10.1007/s00283-013-9372-x
- Article
15
- Mathematical Intelligencer, 2013, v. 35, n. 3, p. 81, doi. 10.1007/s00283-013-9371-y
- Article
16
- Mathematical Intelligencer, 2013, v. 35, n. 3, p. 50, doi. 10.1007/s00283-013-9400-x
- Article
17
- Mathematical Intelligencer, 2013, v. 35, n. 3, p. 69, doi. 10.1007/s00283-013-9379-3
- Wassell, Stephen;
- Williams, Kim
- Article
18
- Mathematical Intelligencer, 2013, v. 35, n. 3, p. 85, doi. 10.1007/s00283-013-9392-6
- Article