Works matching IS 03436993 AND DT 2012 AND VI 34 AND IP 1
2
- Mathematical Intelligencer, 2012, v. 34, n. 1, p. 16, doi. 10.1007/s00283-011-9243-2
- Article
3
- Mathematical Intelligencer, 2012, v. 34, n. 1, p. 34, doi. 10.1007/s00283-011-9253-0
- Article
5
- Mathematical Intelligencer, 2012, v. 34, n. 1, p. 18, doi. 10.1007/s00283-011-9255-y
- Socolar, Joshua;
- Taylor, Joan
- Article
6
- Mathematical Intelligencer, 2012, v. 34, n. 1, p. 52, doi. 10.1007/s00283-011-9257-9
- Article
11
- Mathematical Intelligencer, 2012, v. 34, n. 1, p. 74, doi. 10.1007/s00283-011-9269-5
- Article
12
- Mathematical Intelligencer, 2012, v. 34, n. 1, p. 42, doi. 10.1007/s00283-011-9268-6
- Article
13
- Mathematical Intelligencer, 2012, v. 34, n. 1, p. 1, doi. 10.1007/s00283-011-9266-8
- Article
14
- Mathematical Intelligencer, 2012, v. 34, n. 1, p. 44, doi. 10.1007/s00283-011-9267-7
- Article
15
- Mathematical Intelligencer, 2012, v. 34, n. 1, p. 3, doi. 10.1007/s00283-011-9270-z
- Article
16
- Mathematical Intelligencer, 2012, v. 34, n. 1, p. 6, doi. 10.1007/s00283-011-9273-9
- Article
17
- Mathematical Intelligencer, 2012, v. 34, n. 1, p. 8, doi. 10.1007/s00283-012-9275-2
- Bonato, Anthony;
- Nowakowski, Richard
- Article
18
- Mathematical Intelligencer, 2012, v. 34, n. 1, p. 29, doi. 10.1007/s00283-012-9277-0
- Article