Works matching IS 00246093 AND DT 1989 AND VI 21 AND IP 2
1
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 1, doi. 10.1112/j.1469-2120.1989.tb00287.x
- Article
2
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 1, doi. 10.1112/j.1469-2120.1989.tb00286.x
- Article
3
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 1, doi. 10.1112/j.1469-2120.1989.tb00285.x
- Article
4
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 207, doi. 10.1112/blms/21.2.207
- Article
5
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 205, doi. 10.1112/blms/21.2.205
- Article
6
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 204, doi. 10.1112/blms/21.2.204b
- Article
7
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 204, doi. 10.1112/blms/21.2.204a
- Article
8
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 202, doi. 10.1112/blms/21.2.202
- Article
9
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 201, doi. 10.1112/blms/21.2.201
- Article
10
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 200, doi. 10.1112/blms/21.2.200
- Article
11
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 197, doi. 10.1112/blms/21.2.197
- Article
12
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 186, doi. 10.1112/blms/21.2.186
- Article
13
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 179, doi. 10.1112/blms/21.2.179
- Article
14
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 176, doi. 10.1112/blms/21.2.176
- Article
15
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 171, doi. 10.1112/blms/21.2.171
- Article
16
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 164, doi. 10.1112/blms/21.2.164
- Article
17
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 159, doi. 10.1112/blms/21.2.159
- Article
18
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 153, doi. 10.1112/blms/21.2.153
- Article
19
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 113, doi. 10.1112/blms/21.2.113
- Jones, William B.;
- Njåstad, Olav;
- Thron, W. J.
- Article
20
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 205
- Article
21
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 204
- Article
22
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 204
- Article
23
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 207
- Article
24
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 202
- Article
25
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 201
- Article
26
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 200
- Article
27
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 171
- Article
28
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 197
- Article
29
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 186
- Article
30
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 179
- Article
31
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 176
- Article
32
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 164
- Article
33
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 159
- Article
34
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 153
- Article
35
- Bulletin of the London Mathematical Society, 1989, v. 21, n. 2, p. 113
- Jones, William B.;
- Njåstad, Olav;
- Thron, W. J.
- Article