Works matching IS 00103616 AND DT 2023 AND VI 398 AND IP 2
1
- Communications in Mathematical Physics, 2023, v. 398, n. 2, p. 877, doi. 10.1007/s00220-022-04542-3
- Article
2
- Communications in Mathematical Physics, 2023, v. 398, n. 2, p. 655, doi. 10.1007/s00220-022-04538-z
- Schütte, Philipp;
- Weich, Tobias;
- Barkhofen, Sonja
- Article
3
- Communications in Mathematical Physics, 2023, v. 398, n. 2, p. 679, doi. 10.1007/s00220-022-04537-0
- Article
4
- Communications in Mathematical Physics, 2023, v. 398, n. 2, p. 823, doi. 10.1007/s00220-022-04536-1
- Barraquand, Guillaume;
- Rychnovsky, Mark
- Article
5
- Communications in Mathematical Physics, 2023, v. 398, n. 2, p. 797, doi. 10.1007/s00220-022-04535-2
- Bikram, Panchugopal;
- Mukherjee, Kunal;
- Ricard, Éric;
- Wang, Simeng
- Article
6
- Communications in Mathematical Physics, 2023, v. 398, n. 2, p. 757, doi. 10.1007/s00220-022-04534-3
- Ruan, Yongbin;
- Zhang, Yingchun;
- Zhou, Jie
- Article
7
- Communications in Mathematical Physics, 2023, v. 398, n. 2, p. 703, doi. 10.1007/s00220-022-04533-4
- Kanno, Keita;
- Watari, Taizan
- Article
8
- Communications in Mathematical Physics, 2023, v. 398, n. 2, p. 627, doi. 10.1007/s00220-022-04531-6
- Butterley, Oliver;
- Canestrari, Giovanni;
- Jain, Sakshi
- Article
9
- Communications in Mathematical Physics, 2023, v. 398, n. 2, p. 573, doi. 10.1007/s00220-022-04530-7
- Article
10
- Communications in Mathematical Physics, 2023, v. 398, n. 2, p. 541, doi. 10.1007/s00220-022-04529-0
- Article