Works matching IS 00103616 AND DT 2018 AND VI 364 AND IP 1
1
- Communications in Mathematical Physics, 2018, v. 364, n. 1, p. 357, doi. 10.1007/s00220-018-3250-5
- Article
2
- Communications in Mathematical Physics, 2018, v. 364, n. 1, p. 83, doi. 10.1007/s00220-018-3249-y
- Gao, Li;
- Junge, Marius;
- LaRacuente, Nicholas
- Article
3
- Communications in Mathematical Physics, 2018, v. 364, n. 1, p. 343, doi. 10.1007/s00220-018-3229-2
- Article
4
- Communications in Mathematical Physics, 2018, v. 364, n. 1, p. 1, doi. 10.1007/s00220-018-3193-x
- Article
5
- Communications in Mathematical Physics, 2018, v. 364, n. 1, p. 203, doi. 10.1007/s00220-018-3183-z
- Article
6
- Communications in Mathematical Physics, 2018, v. 364, n. 1, p. 123, doi. 10.1007/s00220-018-3172-2
- Burban, Igor;
- Galinat, Lennart
- Article
7
- Communications in Mathematical Physics, 2018, v. 364, n. 1, p. 45, doi. 10.1007/s00220-018-3170-4
- Article
8
- Communications in Mathematical Physics, 2018, v. 364, n. 1, p. 287, doi. 10.1007/s00220-018-3168-y
- Adler, Mark;
- Johansson, Kurt;
- van Moerbeke, Pierre
- Article
9
- Communications in Mathematical Physics, 2018, v. 364, n. 1, p. 233, doi. 10.1007/s00220-018-3158-0
- Article
10
- Communications in Mathematical Physics, 2018, v. 364, n. 1, p. 171, doi. 10.1007/s00220-018-3149-1
- Article