Works matching IS 00049727 AND DT 2011 AND VI 84 AND IP 3
1
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 408, doi. 10.1017/S000497271100267X
- Article
2
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 433, doi. 10.1017/S0004972711002814
- HAGHANY, A.;
- MAZROOEI, M.;
- VEDADI, M. R.
- Article
3
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 492, doi. 10.1017/S0004972711002802
- GAO, D. Y.;
- KELAREV, A. V.;
- YEARWOOD, J. L.
- Article
4
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. b1, doi. 10.1017/S0004972711000141
- Article
5
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 353, doi. 10.1017/S0004972711002668
- Article
6
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 372, doi. 10.1017/S0004972711002620
- NASR-ISFAHANI, RASOUL;
- NEMATI, MEHDI
- Article
7
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 504, doi. 10.1017/S0004972711002589
- MAGHSOUDI, SAEID;
- NASR-ISFAHANI, RASOUL
- Article
8
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 516, doi. 10.1017/S0004972711002553
- Article
9
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 484, doi. 10.1017/S0004972711002541
- ZHANG, WEN TING;
- LUO, YAN FENG
- Article
10
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 362, doi. 10.1017/S0004972711002528
- PYO, JUNCHEOL;
- SEO, KEOMKYO
- Article
11
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 444, doi. 10.1017/S0004972711002516
- Article
12
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 481, doi. 10.1017/S0004972711002504
- Article
13
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 458, doi. 10.1017/S0004972711002498
- DELLA SALA, GIUSEPPE;
- SARACCO, ALBERTO
- Article
14
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 393, doi. 10.1017/S0004972711002474
- LI, YUANLIN;
- PAN, XIAOYING
- Article
15
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 475, doi. 10.1017/S0004972711002462
- Article
16
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 455, doi. 10.1017/S0004972711002450
- Article
17
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 387, doi. 10.1017/S0004972711002437
- Article
18
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 452, doi. 10.1017/S0004972711002413
- Article
19
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 447, doi. 10.1017/S0004972711002401
- Article
20
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 425, doi. 10.1017/S0004972711002383
- Article
21
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 441, doi. 10.1017/S0004972711002334
- LIN, MINGHUA;
- WIMMER, HARALD K.
- Article
22
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. 414, doi. 10.1017/S0004972711002309
- HANČL, JAROSLAV;
- KOLOUCH, ONDŘEJ
- Article
23
- Bulletin of the Australian Mathematical Society, 2011, v. 84, n. 3, p. f1, doi. 10.1017/S000497271100013X
- Article