Works matching IS 00049727 AND DT 1988 AND VI 38 AND IP 3
1
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 479, doi. 10.1017/S000497270002788X
- Article
2
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 475, doi. 10.1017/S0004972700027878
- Article
3
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 473, doi. 10.1017/S0004972700027866
- Article
4
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 465, doi. 10.1017/S0004972700027854
- Article
5
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 457, doi. 10.1017/S0004972700027842
- Article
6
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 451, doi. 10.1017/S0004972700027830
- Article
7
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 441, doi. 10.1017/S0004972700027829
- Article
8
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 433, doi. 10.1017/S0004972700027817
- Article
9
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 421, doi. 10.1017/S0004972700027805
- Article
10
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 413, doi. 10.1017/S0004972700027799
- Article
11
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 401, doi. 10.1017/S0004972700027787
- Article
12
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 397, doi. 10.1017/S0004972700027775
- Article
13
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 393, doi. 10.1017/S0004972700027763
- Diamond, Phil;
- Kloeden, Peter
- Article
14
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 387, doi. 10.1017/S0004972700027751
- Article
15
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 377, doi. 10.1017/S000497270002774X
- Chen, Bang-Yen;
- Vanhecke, Lieven
- Article
16
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 373, doi. 10.1017/S0004972700027738
- Article
17
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 365, doi. 10.1017/S0004972700027726
- Article
18
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 357, doi. 10.1017/S0004972700027714
- Article
19
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 351, doi. 10.1017/S0004972700027702
- Article
20
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 345, doi. 10.1017/S0004972700027696
- Article
21
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 339, doi. 10.1017/S0004972700027684
- Article
22
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 335, doi. 10.1017/S0004972700027672
- Article
23
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 329, doi. 10.1017/S0004972700027660
- Article
24
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 325, doi. 10.1017/S0004972700027659
- Article
25
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. 321, doi. 10.1017/S0004972700027647
- Article
26
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. b1, doi. 10.1017/S0004972700027623
- Article
27
- Bulletin of the Australian Mathematical Society, 1988, v. 38, n. 3, p. f1, doi. 10.1017/S0004972700027611
- Article