Works matching IS 00049727 AND DT 1971 AND VI 5 AND IP 3
1
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 431, doi. 10.1017/S0004972700047468
- Article
2
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 429, doi. 10.1017/S0004972700047456
- Article
3
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 427, doi. 10.1017/S0004972700047444
- Article
4
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 425, doi. 10.1017/S0004972700047432
- Article
5
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 423, doi. 10.1017/S0004972700047420
- Article
6
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 421, doi. 10.1017/S0004972700047419
- Article
7
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 415, doi. 10.1017/S0004972700047407
- Article
8
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 411, doi. 10.1017/S0004972700047390
- Article
9
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 391, doi. 10.1017/S0004972700047389
- Article
10
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 387, doi. 10.1017/S0004972700047377
- Narici, L.;
- Bachman, G.;
- Beckenstein, E.
- Article
11
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 379, doi. 10.1017/S0004972700047365
- Bachmuth, S.;
- Mochizuki, H.Y.
- Article
12
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 375, doi. 10.1017/S0004972700047353
- Article
13
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 363, doi. 10.1017/S0004972700047341
- Article
14
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 357, doi. 10.1017/S000497270004733X
- Article
15
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 351, doi. 10.1017/S0004972700047328
- Article
16
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 343, doi. 10.1017/S0004972700047316
- Venu Gopal Rao, V.;
- Sahney, B.N.
- Article
17
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 341, doi. 10.1017/S0004972700047304
- Kovács, L.G.;
- Vaughan-Lee, M.R.
- Article
18
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 337, doi. 10.1017/S0004972700047298
- Article
19
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 321, doi. 10.1017/S0004972700047274
- Article
20
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 331, doi. 10.1017/S0004972700047286
- Article
21
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 315, doi. 10.1017/S0004972700047262
- Article
22
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 305, doi. 10.1017/S0004972700047250
- Article
23
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. 289, doi. 10.1017/S0004972700047249
- Singal, M.K.;
- Jain, Pushpa
- Article
24
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. b1, doi. 10.1017/S0004972700047225
- Article
25
- Bulletin of the Australian Mathematical Society, 1971, v. 5, n. 3, p. f1, doi. 10.1017/S0004972700047213
- Article