Works about ZINC electrodes
Results: 496
Achieving Dendrite‐Free Zinc Metal Anodes via Molecule Anchoring and lon‐Transport Pumping.
- Published in:
- Chemistry - A European Journal, 2024, v. 30, n. 29, p. 1, doi. 10.1002/chem.202400567
- By:
- Publication type:
- Article
Ultra‐High Proportion of Grain Boundaries in Zinc Metal Anode Spontaneously Inhibiting Dendrites Growth.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 32, p. 1, doi. 10.1002/ange.202406292
- By:
- Publication type:
- Article
Constructing Dynamic Anode/Electrolyte Interfaces Coupled with Regulated Solvation Structures for Long‐Term and Highly Reversible Zinc Metal Anodes.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 22, p. 1, doi. 10.1002/ange.202403695
- By:
- Publication type:
- Article
Connections to the Electrodes Control the Transport Mechanism in Single‐Molecule Transistors.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 16, p. 1, doi. 10.1002/ange.202401323
- By:
- Publication type:
- Article
Interfacial Engineering of Zn Metal via a Localized Conjugated Layer for Highly Reversible Aqueous Zinc Ion Battery.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 14, p. 1, doi. 10.1002/ange.202319091
- By:
- Publication type:
- Article
Toward Simultaneous Dense Zinc Deposition and Broken Side‐Reaction Loops in the Zn//V<sub>2</sub>O<sub>5</sub> System.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 11, p. 1, doi. 10.1002/ange.202318928
- By:
- Publication type:
- Article
Electrochemical Hydrophobic Tri‐layer Interface Rendered Mechanically Graded Solid Electrolyte Interface for Stable Zinc Metal Anode.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 9, p. 1, doi. 10.1002/ange.202318063
- By:
- Publication type:
- Article
Thermally Healable Electrolyte‐Electrode Interface for Sustainable Quasi‐Solid Zinc‐ion Batteries.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 9, p. 1, doi. 10.1002/ange.202317457
- By:
- Publication type:
- Article
Constructing Solid Electrolyte Interphase for Aqueous Zinc Batteries.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 47, p. 1, doi. 10.1002/ange.202309957
- By:
- Publication type:
- Article
Fine‐Tuning Electrolyte Concentration and Metal–Organic Framework Surface toward Actuating Fast Zn<sup>2+</sup> Dehydration for Aqueous Zn‐Ion Batteries.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 44, p. 1, doi. 10.1002/ange.202307274
- By:
- Publication type:
- Article
A Polarized Gel Electrolyte for Wide‐Temperature Flexible Zinc‐Air Batteries.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 20, p. 1, doi. 10.1002/ange.202301114
- By:
- Publication type:
- Article
Dynamically Resettable Electrode‐Electrolyte Interface through Supramolecular Sol‐Gel Transition Electrolyte for Flexible Zinc Batteries.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 17, p. 1, doi. 10.1002/ange.202300705
- By:
- Publication type:
- Article
Highly Reversible Zinc Metal Anode in a Dilute Aqueous Electrolyte Enabled by a pH Buffer Additive.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 5, p. 1, doi. 10.1002/ange.202212695
- By:
- Publication type:
- Article
Monolithic Phosphate Interphase for Highly Reversible and Stable Zn Metal Anode.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 4, p. 1, doi. 10.1002/ange.202215600
- By:
- Publication type:
- Article
Empowering Zn Electrode Current Capability Along Interfacial Stability by Optimizing Intrinsic Safe Organic Electrolytes.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 2, p. 1, doi. 10.1002/ange.202215110
- By:
- Publication type:
- Article
A Non‐Alkaline Electrolyte for Electrically Rechargeable Zinc‐Air Batteries with Long‐Term Operation Stability in Ambient Air.
- Published in:
- Angewandte Chemie, 2022, v. 134, n. 38, p. 1, doi. 10.1002/ange.202207353
- By:
- Publication type:
- Article
Working Zinc–Air Batteries at 80 °C.
- Published in:
- Angewandte Chemie, 2022, v. 134, n. 33, p. 1, doi. 10.1002/ange.202208042
- By:
- Publication type:
- Article
Designing Anion‐Type Water‐Free Zn<sup>2+</sup> Solvation Structure for Robust Zn Metal Anode.
- Published in:
- Angewandte Chemie, 2021, v. 133, n. 43, p. 23545, doi. 10.1002/ange.202109682
- By:
- Publication type:
- Article
Electrodeposition of Zinc onto Au(111) and Au(100) from the Ionic Liquid [MPPip][TFSI].
- Published in:
- Angewandte Chemie, 2021, v. 133, n. 37, p. 20624, doi. 10.1002/ange.202107195
- By:
- Publication type:
- Article
Can Aqueous Zinc–Air Batteries Work at Sub‐Zero Temperatures?
- Published in:
- Angewandte Chemie, 2021, v. 133, n. 28, p. 15409, doi. 10.1002/ange.202104171
- By:
- Publication type:
- Article
Functionalized Phosphonium Cations Enable Zinc Metal Reversibility in Aqueous Electrolytes.
- Published in:
- Angewandte Chemie, 2021, v. 133, n. 22, p. 12546, doi. 10.1002/ange.202017020
- By:
- Publication type:
- Article
Effect of Zinc‐Doping on the Reduction of the Hot‐Carrier Cooling Rate in Halide Perovskites.
- Published in:
- Angewandte Chemie, 2021, v. 133, n. 19, p. 11052, doi. 10.1002/ange.202100099
- By:
- Publication type:
- Article
Towards High‐Performance Zinc‐Based Hybrid Supercapacitors via Macropores‐Based Charge Storage in Organic Electrolytes.
- Published in:
- Angewandte Chemie, 2021, v. 133, n. 17, p. 9696, doi. 10.1002/ange.202014766
- By:
- Publication type:
- Article
Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low‐Cost Antisolvents.
- Published in:
- Angewandte Chemie, 2021, v. 133, n. 13, p. 7442, doi. 10.1002/ange.202016531
- By:
- Publication type:
- Article
Toward Flexible Zinc‐Ion Hybrid Capacitors with Superhigh Energy Density and Ultralong Cycling Life: The Pivotal Role of ZnCl<sub>2</sub> Salt‐Based Electrolytes.
- Published in:
- Angewandte Chemie, 2021, v. 133, n. 2, p. 1003, doi. 10.1002/ange.202012030
- By:
- Publication type:
- Article
Hydrophobic Organic‐Electrolyte‐Protected Zinc Anodes for Aqueous Zinc Batteries.
- Published in:
- Angewandte Chemie, 2020, v. 132, n. 43, p. 19454, doi. 10.1002/ange.202008634
- By:
- Publication type:
- Article
Molecular Engineering of a 3D Self‐Supported Electrode for Oxygen Electrocatalysis in Neutral Media.
- Published in:
- Angewandte Chemie, 2019, v. 131, n. 52, p. 19059, doi. 10.1002/ange.201911441
- By:
- Publication type:
- Article
Inhibiting VOPO<sub>4</sub>⋅x H<sub>2</sub>O Decomposition and Dissolution in Rechargeable Aqueous Zinc Batteries to Promote Voltage and Capacity Stabilities.
- Published in:
- Angewandte Chemie, 2019, v. 131, n. 45, p. 16203, doi. 10.1002/ange.201908853
- By:
- Publication type:
- Article
Titelbild: The Three‐Dimensional Dendrite‐Free Zinc Anode on a Copper Mesh with a Zinc‐Oriented Polyacrylamide Electrolyte Additive (Angew. Chem. 44/2019).
- Published in:
- Angewandte Chemie, 2019, v. 131, n. 44, p. 15701, doi. 10.1002/ange.201911406
- By:
- Publication type:
- Article
The Three‐Dimensional Dendrite‐Free Zinc Anode on a Copper Mesh with a Zinc‐Oriented Polyacrylamide Electrolyte Additive.
- Published in:
- Angewandte Chemie, 2019, v. 131, n. 44, p. 15988, doi. 10.1002/ange.201907830
- By:
- Publication type:
- Article
The Kirkendall Effect for Engineering Oxygen Vacancy of Hollow Co<sub>3</sub>O<sub>4</sub> Nanoparticles toward High‐Performance Portable Zinc–Air Batteries.
- Published in:
- Angewandte Chemie, 2019, v. 131, n. 39, p. 13978, doi. 10.1002/ange.201908736
- By:
- Publication type:
- Article
Redox‐Inert Fe<sup>3+</sup> Ions in Octahedral Sites of Co‐Fe Spinel Oxides with Enhanced Oxygen Catalytic Activity for Rechargeable Zinc–Air Batteries.
- Published in:
- Angewandte Chemie, 2019, v. 131, n. 38, p. 13425, doi. 10.1002/ange.201907595
- By:
- Publication type:
- Article
Nature of the potential of nonpolarized zinc electrode in zincate solutions.
- Published in:
- Protection of Metals, 2006, v. 42, n. 4, p. 334, doi. 10.1134/S0033173206040047
- By:
- Publication type:
- Article
Surface Modification Induces Oriented Zn(002) Deposition for Highly Stable Zinc Anode.
- Published in:
- Batteries, 2024, v. 10, n. 6, p. 178, doi. 10.3390/batteries10060178
- By:
- Publication type:
- Article
[SBP]BF 4 Additive Stabilizing Zinc Anode by Simultaneously Regulating the Solvation Shell and Electrode Interface.
- Published in:
- Batteries, 2024, v. 10, n. 3, p. 102, doi. 10.3390/batteries10030102
- By:
- Publication type:
- Article
Graphite Felt as an Innovative Electrode Material for Alkaline Water Electrolysis and Zinc–Air Batteries.
- Published in:
- Batteries, 2024, v. 10, n. 2, p. 49, doi. 10.3390/batteries10020049
- By:
- Publication type:
- Article
Recent Advances in Electrospun Nanostructured Electrodes in Zinc-Ion Batteries.
- Published in:
- Batteries, 2024, v. 10, n. 1, p. 22, doi. 10.3390/batteries10010022
- By:
- Publication type:
- Article
A Self-Growing 3D Porous Sn Protective Layer Enhanced Zn Anode.
- Published in:
- Batteries, 2023, v. 9, n. 5, p. 262, doi. 10.3390/batteries9050262
- By:
- Publication type:
- Article
Importance of Continuous and Simultaneous Monitoring of Both Electrode Voltages during Discharge/Charge Battery Tests: Application to Zn-Based Batteries.
- Published in:
- Batteries, 2022, v. 8, n. 11, p. 221, doi. 10.3390/batteries8110221
- By:
- Publication type:
- Article
Zinc as a Promising Anodic Material for All-Solid-State Lithium-Ion Batteries.
- Published in:
- Batteries, 2022, v. 8, n. 9, p. 113, doi. 10.3390/batteries8090113
- By:
- Publication type:
- Article
Effects of Cell Design Parameters on Zinc-Air Battery Performance.
- Published in:
- Batteries, 2022, v. 8, n. 8, p. N.PAG, doi. 10.3390/batteries8080092
- By:
- Publication type:
- Article
Development of Flow Fields for Zinc Slurry Air Flow Batteries.
- Published in:
- Batteries, 2020, v. 6, n. 1, p. 1, doi. 10.3390/batteries6010015
- By:
- Publication type:
- Article
Prototype System of Rocking-Chair Zn-Ion Battery Adopting Zinc Chevrel Phase Anode and Rhombohedral Zinc Hexacyanoferrate Cathode.
- Published in:
- Batteries, 2019, v. 5, n. 1, p. 1, doi. 10.3390/batteries5010003
- By:
- Publication type:
- Article
Enhancing the Cycle Life of a Zinc-Air Battery by Means of Electrolyte Additives and Zinc Surface Protection.
- Published in:
- Batteries, 2018, v. 4, n. 3, p. 1, doi. 10.3390/batteries4030046
- By:
- Publication type:
- Article
Electrocatalysis at Electrodes for Vanadium Redox Flow Batteries.
- Published in:
- Batteries, 2018, v. 4, n. 3, p. 1, doi. 10.3390/batteries4030047
- By:
- Publication type:
- Article
Умови синтези наноструктур оксиду Цинку з продуктів деструкції перенапруженого наносекундного розряду між електродами з цинку в кисні під опромінюванням підкладинки ультрафіолетовим випроміненням.
- Published in:
- Nanosistemi, Nanomateriali, Nanotehnologii, 2023, v. 21, n. 1, p. 73
- By:
- Publication type:
- Article
Характеристики та параметри плазми газорозрядного реактора з «холодної» синтези біметалевих наночастинок Cu–Zn в арґоні.
- Published in:
- Nanosistemi, Nanomateriali, Nanotehnologii, 2022, v. 20, n. 4, p. 839
- By:
- Publication type:
- Article
Self‐Assembled Nanowrinkle‐Network‐Structured Transparent Conductive Zinc Oxide for High‐Efficiency Inorganic Light‐Emitting Diodes (Adv. Mater. Interfaces 4/2022).
- Published in:
- Advanced Materials Interfaces, 2022, v. 9, n. 4, p. 1, doi. 10.1002/admi.202270022
- By:
- Publication type:
- Article
Constructing the Triple‐Phase Boundaries of Integrated Air Electrodes for High‐Performance Zn–Air Batteries.
- Published in:
- Advanced Materials Interfaces, 2021, v. 8, n. 21, p. 1, doi. 10.1002/admi.202101256
- By:
- Publication type:
- Article
Stable Molybdenum Oxide Cathodes: Achieving Stable Molybdenum Oxide Cathodes for Aqueous Zinc‐Ion Batteries in Water‐in‐Salt Electrolyte (Adv. Mater. Interfaces 9/2021).
- Published in:
- Advanced Materials Interfaces, 2021, v. 8, n. 9, p. 1, doi. 10.1002/admi.202170052
- By:
- Publication type:
- Article