Works matching DE "SHIFT operators (Operator theory)"


Results: 101
    1
    2
    3
    4
    5

    Extensions of Hardy Type Integral Inequality.

    Published in:
    Tamsui Oxford Journal of Information & Mathematical Sciences (TOJIMS), 2012, v. 28, n. 1, p. 27
    By:
    • Sarıkayat, Mehmet Zeki;
    • Yıldırım, Hüseyin
    Publication type:
    Article
    6
    7

    Yangian Realization for Dirac Oscillator.

    Published in:
    International Journal of Theoretical Physics, 2004, v. 43, n. 12, p. 2395, doi. 10.1007/s10773-004-7706-3
    By:
    • Wu, Chunfeng;
    • Xue, Kang
    Publication type:
    Article
    8
    9
    10
    11
    12
    13
    14
    15

    ON STOCHASTIC DOMINANCE OF NILPOTENT OPERATORS.

    Published in:
    Infinite Dimensional Analysis, Quantum Probability & Related Topics, 2013, v. 16, n. 1, p. -1, doi. 10.1142/S0219025713500094
    By:
    • MUDAKKAR, SYEDA RABAB;
    • UTEV, SERGEY
    Publication type:
    Article
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31

    Shifts on products of banach spaces.

    Published in:
    QM - Quaestiones Mathematicae, 2011, v. 34, n. 3, p. 327, doi. 10.2989/16073606.2011.622875
    By:
    • Moshokoa, S. P.;
    • Rajagopalan, M.;
    • Sundaresan, K.
    Publication type:
    Article
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41

    A Simple Proof of the A2 Conjecture.

    Published in:
    IMRN: International Mathematics Research Notices, 2013, v. 2013, n. 14, p. 3159, doi. 10.1093/imrn/rns145
    By:
    • Lerner, Andrei K.
    Publication type:
    Article
    42

    The strong Popov form of nonlinear input-output equations.

    Published in:
    Proceedings of the Estonian Academy of Sciences, 2018, v. 67, n. 3, p. 193, doi. 10.3176/proc.2018.3.01
    By:
    • Bartosiewicz, Zbigniew;
    • Pawłuszewicz, Ewa;
    • Wyrwas, Małgorzata;
    • Kotta, Ülle;
    • Tõnsoc, Maris
    Publication type:
    Article
    43
    44
    45
    46
    47
    48
    49
    50