Works about HYDROGENASE
Results: 787
Transcriptome Analyses of Metabolic Enzymes in Thiosulfate-and Hydrogen-Grown Hydrogenobacter thermophilus Cells.
- Published in:
- Bioscience, Biotechnology & Biochemistry, 2012, v. 76, n. 9, p. 1677, doi. 10.1271/bbb.120210
- By:
- Publication type:
- Article
Identification and Characterization of UDP-Glucose Dehydrogenase from the Hyperthermophilic Archaon, Pyrobaculum islandicum.
- Published in:
- Bioscience, Biotechnology & Biochemistry, 2011, v. 75, n. 10, p. 2049, doi. 10.1271/bbb.110375
- By:
- Publication type:
- Article
Purification and Characterization of Membrane-Associated Hydrogenase from the Deep-Sea Epsilonproteobacterium Hydrogenimonas thermophila.
- Published in:
- Bioscience, Biotechnology & Biochemistry, 2010, v. 74, n. 8, p. 1624, doi. 10.1271/bbb.100231
- By:
- Publication type:
- Article
Amplifying Reactivity of Bio‐Inspired [FeFe]‐Hydrogenase Mimics by Organic Nanotubes.
- Published in:
- Chemistry - A European Journal, 2024, v. 30, n. 68, p. 1, doi. 10.1002/chem.202403011
- By:
- Publication type:
- Article
Single‐Step Synthesis of Ni<sup>I</sup> from Ni<sup>II</sup> with H<sub>2</sub>.
- Published in:
- Chemistry - A European Journal, 2023, v. 29, n. 69, p. 1, doi. 10.1002/chem.202302297
- By:
- Publication type:
- Article
Expanding the Horizon of Bio‐Inspired Catalyst Design with Tactical Incorporation of Drug Molecules.
- Published in:
- Chemistry - A European Journal, 2023, v. 29, n. 21, p. 1, doi. 10.1002/chem.202203730
- By:
- Publication type:
- Article
Current State of [Fe]‐Hydrogenase and Its Biomimetic Models.
- Published in:
- Chemistry - A European Journal, 2022, v. 28, n. 57, p. 1, doi. 10.1002/chem.202201499
- By:
- Publication type:
- Article
Titelbild: Expedited Synthesis of Metal Phosphides Maximizes Dispersion, Air Stability, and Catalytic Performance in Selective Hydrogenation (Angew. Chem. 33/2024).
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 33, p. 1, doi. 10.1002/ange.202411602
- By:
- Publication type:
- Article
Innenrücktitelbild: Chloride‐ and Hydrosulfide‐Bound 2Fe Complexes as Models of the Oxygen‐Stable State of [FeFe] Hydrogenase (Angew. Chem. 33/2024).
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 33, p. 1, doi. 10.1002/ange.202411597
- By:
- Publication type:
- Article
Chloride‐ and Hydrosulfide‐Bound 2Fe Complexes as Models of the Oxygen‐Stable State of [FeFe] Hydrogenase.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 33, p. 1, doi. 10.1002/ange.202408142
- By:
- Publication type:
- Article
Final Stages in the Biosynthesis of the [FeFe]‐Hydrogenase Active Site.
- Published in:
- Angewandte Chemie, 2024, v. 136, n. 22, p. 1, doi. 10.1002/ange.202404044
- By:
- Publication type:
- Article
Manganese Transfer Hydrogenases Based on the Biotin‐Streptavidin Technology.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 43, p. 1, doi. 10.1002/ange.202311896
- By:
- Publication type:
- Article
Frontispiz: Aktivitätssteigerung von Hydrogenase zur photokatalytischen Wasserstofferzeugung an Luft mittels Lösemitteltuning.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 22, p. 1, doi. 10.1002/ange.202382262
- By:
- Publication type:
- Article
Aktivitätssteigerung von Hydrogenase zur photokatalytischen Wasserstofferzeugung an Luft mittels Lösemitteltuning.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 22, p. 1, doi. 10.1002/ange.202219176
- By:
- Publication type:
- Article
Die Bindung von Cyanid an [FeFe]‐Hydrogenasen stabilisiert die alternative Konfiguration des Protonentransferpfads.
- Published in:
- Angewandte Chemie, 2023, v. 135, n. 7, p. 1, doi. 10.1002/ange.202216903
- By:
- Publication type:
- Article
Titelbild: [FeFe]‐Hydrogenase: Defined Lysate‐Free Maturation Reveals a Key Role for Lipoyl‐H‐Protein in DTMA Ligand Biosynthesis (Angew. Chem. 22/2022).
- Published in:
- Angewandte Chemie, 2022, v. 134, n. 22, p. 1, doi. 10.1002/ange.202204929
- By:
- Publication type:
- Article
[FeFe]‐Hydrogenase: Defined Lysate‐Free Maturation Reveals a Key Role for Lipoyl‐H‐Protein in DTMA Ligand Biosynthesis.
- Published in:
- Angewandte Chemie, 2022, v. 134, n. 22, p. 1, doi. 10.1002/ange.202203413
- By:
- Publication type:
- Article
Ein neuer Aufbau zur Untersuchung der Struktur und Funktion von solvatisierten, lyophilisierten und kristallinen Metalloenzymen – veranschaulicht anhand von [NiFe]‐Hydrogenasen.
- Published in:
- Angewandte Chemie, 2021, v. 133, n. 29, p. 15988, doi. 10.1002/ange.202100451
- By:
- Publication type:
- Article
E. coli Nickel‐Iron Hydrogenase 1 Catalyses Non‐native Reduction of Flavins: Demonstration for Alkene Hydrogenation by Old Yellow Enzyme Ene‐reductases**.
- Published in:
- Angewandte Chemie, 2021, v. 133, n. 25, p. 13943, doi. 10.1002/ange.202101186
- By:
- Publication type:
- Article
Diversifying Metal–Ligand Cooperative Catalysis in Semi‐Synthetic [Mn]‐Hydrogenases.
- Published in:
- Angewandte Chemie, 2021, v. 133, n. 24, p. 13462, doi. 10.1002/ange.202100443
- By:
- Publication type:
- Article
Hydrogenase Mimics in M<sub>12</sub>L<sub>24</sub> Nanospheres to Control Overpotential and Activity in Proton‐Reduction Catalysis.
- Published in:
- Angewandte Chemie, 2020, v. 132, n. 42, p. 18643, doi. 10.1002/ange.202008298
- By:
- Publication type:
- Article
X‐ray Crystallography and Vibrational Spectroscopy Reveal the Key Determinants of Biocatalytic Dihydrogen Cycling by [NiFe] Hydrogenases.
- Published in:
- Angewandte Chemie, 2019, v. 131, n. 51, p. 18883, doi. 10.1002/ange.201908258
- By:
- Publication type:
- Article
Cysteine SH and Glutamate COOH Contributions to [NiFe] Hydrogenase Proton Transfer Revealed by Highly Sensitive FTIR Spectroscopy.
- Published in:
- Angewandte Chemie, 2019, v. 131, n. 38, p. 13419, doi. 10.1002/ange.201904472
- By:
- Publication type:
- Article
Catalytic Metallopolymers from [2Fe‐2S] Clusters: Artificial Metalloenzymes for Hydrogen Production.
- Published in:
- Angewandte Chemie, 2019, v. 131, n. 23, p. 7617, doi. 10.1002/ange.201813776
- By:
- Publication type:
- Article
The Bacterial [Fe]‐Hydrogenase Paralog HmdII Uses Tetrahydrofolate Derivatives as Substrates.
- Published in:
- Angewandte Chemie, 2019, v. 131, n. 11, p. 3544, doi. 10.1002/ange.201813465
- By:
- Publication type:
- Article
Hydrogen Evolution from Aqueous Solutions Mediated by a Heterogenized [NiFe]‐Hydrogenase Model: Low pH Enables Catalysis through an Enzyme‐Relevant Mechanism.
- Published in:
- Angewandte Chemie, 2018, v. 130, n. 49, p. 16233, doi. 10.1002/ange.201808215
- By:
- Publication type:
- Article
Diversity of Cyanobacterial Hydrogenases, a Molecular Approach.
- Published in:
- Current Microbiology, 2000, v. 40, n. 6, p. 356, doi. 10.1007/s002840010070
- By:
- Publication type:
- Article
Transcriptional Analysis of Hydrogenase Genes in the Cyanobacteria Anacystis nidulans and Anabaena variabilis Monitored by RT-PCR.
- Published in:
- Current Microbiology, 2000, v. 40, n. 5, p. 315, doi. 10.1007/s002849910063
- By:
- Publication type:
- Article
Spin-forbidden CO binding to iron-sulfur cluster-free hydrogenase: A density functional study.
- Published in:
- Journal of Structural Chemistry, 2017, v. 58, n. 2, p. 349, doi. 10.1134/S0022476617020160
- By:
- Publication type:
- Article
Artificial iron hydrogenase made by covalent grafting of Knölker's complex into xylanase: Application in asymmetric hydrogenation of an aryl ketone in water.
- Published in:
- Biotechnology & Applied Biochemistry, 2020, v. 67, n. 4, p. 563, doi. 10.1002/bab.1906
- By:
- Publication type:
- Article
Isolation and characterization of a new [FeFe]-hydrogenase from Clostridium perfringens.
- Published in:
- Biotechnology & Applied Biochemistry, 2016, v. 63, n. 3, p. 305, doi. 10.1002/bab.1382
- By:
- Publication type:
- Article
Cryo-EM reveals a composite flavobicluster electron bifurcation site in the Bfu family member NfnABC.
- Published in:
- Communications Biology, 2025, v. 8, n. 1, p. 1, doi. 10.1038/s42003-025-07706-8
- By:
- Publication type:
- Article
Inactivation of the uptake hydrogenase in the purple non-sulfur photosynthetic bacterium Rubrivivax gelatinosus CBS enables a biological water–gas shift platform for H<sub>2</sub> production.
- Published in:
- Journal of Industrial Microbiology & Biotechnology, 2019, v. 46, n. 7, p. 993, doi. 10.1007/s10295-019-02173-7
- By:
- Publication type:
- Article
Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum.
- Published in:
- Journal of Industrial Microbiology & Biotechnology, 2017, v. 44, n. 7, p. 1115, doi. 10.1007/s10295-017-1933-0
- By:
- Publication type:
- Article
Unraveling Activity and Decomposition Pathways of [FeFe] Hydrogenase Mimics Covalently Bonded to Silicon Photoelectrodes.
- Published in:
- Advanced Materials Interfaces, 2021, v. 8, n. 10, p. 1, doi. 10.1002/admi.202001961
- By:
- Publication type:
- Article
Theoretical Understanding of the Penetration of O<sub>2</sub> in Enzymatic Redox Polymer Films: The Case of Unidirectional Catalysis and Irreversible Inactivation in a Film of Arbitrary Thickness.
- Published in:
- ChemElectroChem, 2021, v. 8, n. 13, p. 2607, doi. 10.1002/celc.202100586
- By:
- Publication type:
- Article
An [FeFe]-Hydrogenase Mimic Immobilized through Simple Physiadsorption and Active for Aqueous H<sub>2</sub> Production.
- Published in:
- ChemElectroChem, 2021, v. 8, n. 9, p. 1674, doi. 10.1002/celc.202100377
- By:
- Publication type:
- Article
Conserved Histidine Adjacent to the Proximal Cluster Tunes the Anaerobic Reductive Activation of <italic>Escherichia coli</italic> Membrane‐Bound [NiFe] Hydrogenase‐1.
- Published in:
- ChemElectroChem, 2018, v. 5, n. 6, p. 855, doi. 10.1002/celc.201800047
- By:
- Publication type:
- Article
Wiring of Photosystem I and Hydrogenase on an Electrode for Photoelectrochemical H<sub>2</sub> Production by using Redox Polymers for Relatively Positive Onset Potential.
- Published in:
- ChemElectroChem, 2017, v. 4, n. 1, p. 90, doi. 10.1002/celc.201600506
- By:
- Publication type:
- Article
Impact of Carbon Nanotube Surface Chemistry on Hydrogen Oxidation by Membrane-Bound Oxygen-Tolerant Hydrogenases.
- Published in:
- ChemElectroChem, 2016, v. 3, n. 12, p. 2179, doi. 10.1002/celc.201600460
- By:
- Publication type:
- Article
Utilization of Non-Innocent Redox Ligands in [FeFe] Hydrogenase Modeling for Hydrogen Production.
- Published in:
- Comments on Inorganic Chemistry, 2016, v. 36, n. 3, p. 141, doi. 10.1080/02603594.2015.1115397
- By:
- Publication type:
- Article
Heterobimetallic Models of the [NiFe] Hydrogenases: A Structural and Spectroscopic Comparison.
- Published in:
- Comments on Inorganic Chemistry, 2016, v. 36, n. 3, p. 123, doi. 10.1080/02603594.2015.1108914
- By:
- Publication type:
- Article
Novel Ligand Architectures for Metalloenzyme Modeling: Anthracene-Based Ligands for Synthetic Modeling of Mono-[Fe] Hydrogenase.
- Published in:
- Comments on Inorganic Chemistry, 2014, v. 34, n. 3-4, p. 103, doi. 10.1080/02603594.2014.961062
- By:
- Publication type:
- Article
HYDROGENASE ACTIVE SITES: A NEW PARADIGM FOR NATURAL PRODUCT-INSPIRED SYNTHESIS BASED ON ORGANOMETALLIC CHEMISTRY.
- Published in:
- Comments on Inorganic Chemistry, 2010, v. 31, n. 3-4, p. 144, doi. 10.1080/02603594.2010.517463
- By:
- Publication type:
- Article
EFFECTS OF Co AND Ni AND THEIR COMPLEX ON SIMULATED COALBED BIOMETHANE PRODUCTION AND SOME KEY ENZYME IN METHANOGENESIS.
- Published in:
- Oxidation Communications, 2016, v. 39, n. 2A, p. 1907
- By:
- Publication type:
- Article
Sulfur Metabolism in Thiocapsa bogorovii BBS and the Role of HydSL Hydrogenase.
- Published in:
- Microbiology (00262617), 2023, v. 92, p. S22, doi. 10.1134/S002626172360386X
- By:
- Publication type:
- Article
The Mechanisms and Role of Photosynthetic Hydrogen Production by Green Microalgae.
- Published in:
- Microbiology (00262617), 2020, v. 89, n. 3, p. 251, doi. 10.1134/S0026261720030169
- By:
- Publication type:
- Article
Molecular genetic analysis of new Anabaena strains isolated from a plant-cyanobacterial community.
- Published in:
- Microbiology (00262617), 2010, v. 79, n. 5, p. 630, doi. 10.1134/S0026261710050073
- By:
- Publication type:
- Article
The Effect of Sodium Salts and pH on the Hydrogenase Activity of Haloalkaliphilic Sulfate-Reducing Bacteria.
- Published in:
- Microbiology (00262617), 2005, v. 74, n. 4, p. 395, doi. 10.1007/s11021-005-0079-7
- By:
- Publication type:
- Article
The Involvement of Hydrogenases 1 and 2 in the Hydrogen-Dependent Nitrate Respiration of Escherichia coli.
- Published in:
- Microbiology (00262617), 2003, v. 72, n. 6, p. 654, doi. 10.1023/B:MICI.0000008364.76119.b8
- By:
- Publication type:
- Article