Works matching DE "ASYMPTOTIC theory of the Navier-Stokes equation"
1
- Theoretical & Computational Fluid Dynamics, 2011, v. 25, n. 1-4, p. 43, doi. 10.1007/s00162-010-0186-6
- Article
2
- Communications in Mathematical Physics, 2017, v. 352, n. 1, p. 201, doi. 10.1007/s00220-016-2794-5
- Article
3
- Communications in Mathematical Physics, 2014, v. 329, n. 2, p. 725, doi. 10.1007/s00220-014-1961-9
- Jüngel, Ansgar;
- Lin, Chi-Kun;
- Wu, Kung-Chien
- Article
4
- Semigroup Forum, 2011, v. 82, n. 1, p. 61, doi. 10.1007/s00233-010-9281-7
- Lasiecka, Irena;
- Lu, Yongjin
- Article
5
- Stochastic Environmental Research & Risk Assessment, 2008, v. 22, n. 3, p. 421, doi. 10.1007/s00477-007-0121-6
- Kestener, Pierre;
- Arneodo, Alain
- Article
6
- International Journal of Mechanical Engineering Education, 1999, v. 27, n. 1, p. 55, doi. 10.7227/IJMEE.27.1.5
- Article
7
- Communications in Partial Differential Equations, 2001, v. 26, n. 1/2, p. 335, doi. 10.1081/PDE-100001758
- Lombardo, Maria;
- Caflisch, Russel;
- Sammartino, Marco
- Article
8
- Applied Mathematics & Optimization, 2008, v. 57, n. 3, p. 371, doi. 10.1007/s00245-007-9026-5
- El Jarroudi, M.;
- Brillard, A.
- Article
9
- Archive for Rational Mechanics & Analysis, 2012, v. 205, n. 2, p. 585, doi. 10.1007/s00205-012-0516-5
- Article
10
- Archive for Rational Mechanics & Analysis, 2012, v. 205, n. 2, p. 553, doi. 10.1007/s00205-012-0515-6
- Hillairet, Matthieu;
- Wittwer, Peter
- Article
11
- Archive for Rational Mechanics & Analysis, 2011, v. 199, n. 1, p. 145, doi. 10.1007/s00205-010-0320-z
- Iftimie, Dragoş;
- Sueur, Franck
- Article
12
- Archive for Rational Mechanics & Analysis, 2011, v. 199, n. 1, p. 117, doi. 10.1007/s00205-010-0319-5
- Hou, Thomas;
- Li, Congming;
- Shi, Zuoqiang;
- Wang, Shu;
- Yu, Xinwei
- Article
13
- Archive for Rational Mechanics & Analysis, 2005, v. 177, n. 2, p. 231, doi. 10.1007/s00205-005-0365-6
- Kagei, Yoshiyuki;
- Kobayashi, Takayuki
- Article
14
- Applicable Analysis, 2010, v. 89, n. 1, p. 49, doi. 10.1080/00036810903437796
- Gung-Min Gie;
- Hamouda, Makram;
- Temam, Roger
- Article
15
- IMA Journal of Numerical Analysis, 2000, v. 20, n. 4, doi. 10.1093/imanum/20.4.633
- Hill, Adrian T.;
- Süli, Endre
- Article
16
- Mathematical Models & Methods in Applied Sciences, 2009, v. 19, n. 3, p. 387, doi. 10.1142/S0218202509003474
- DECOENE, ASTRID;
- BONAVENTURA, LUCA;
- MIGLIO, EDIE;
- SALERI, FAUSTO
- Article
17
- Mathematical Models & Methods in Applied Sciences, 2008, v. 18, n. 8, p. 1383, doi. 10.1142/S0218202508003078
- Article
18
- Fluid Dynamics, 2014, v. 49, n. 2, p. 174, doi. 10.1134/S0015462814020069
- Article
19
- Fluid Dynamics, 2013, v. 48, n. 1, p. 77, doi. 10.1134/S0015462813010092
- Gaifullin, A.;
- Zubtsov, A.
- Article
20
- Annales de l'Institut Henri Poincaré C, 2011, v. 28, n. 2, p. 303, doi. 10.1016/j.anihpc.2011.01.003
- Article