Works matching DE "ASYMPTOTIC theory of symmetry groups"
1
- Mathematics of Operations Research, 2011, v. 36, n. 4, p. 670, doi. 10.1287/moor.1110.0513
- Yongchao Liu;
- Huifu Xu;
- Jane J. Ye
- Article
2
- Journal of Nonparametric Statistics, 2009, v. 21, n. 2, p. 177, doi. 10.1080/10485250802485528
- Akritas, M. G.;
- Stavropoulos, A.;
- Caroni, C.
- Article
3
- Games (20734336), 2010, v. 1, n. 4, p. 438, doi. 10.3390/g1040438
- Guarino, Antonio;
- Ianni, Antonella
- Article
4
- Mathematical Notes, 2012, v. 91, n. 3/4, p. 517, doi. 10.1134/S0001434612030261
- Zubkov, A.;
- Men'shenin, D.
- Article
5
- IMRN: International Mathematics Research Notices, 2000, v. 2000, n. 20, p. 1043, doi. 10.1155/S1073792800000532
- Article
6
- Archivum Mathematicum, 2006, v. 42, p. 85
- Biquard, Olivier;
- Mazzeo, Rafe
- Article
7
- Journal of Combinatorial Designs, 2013, v. 21, n. 3, p. 112, doi. 10.1002/jcd.21315
- Chan, Justin H.;
- Dukes, Peter J.;
- Lamken, Esther R.;
- Ling, Alan C.H.
- Article
8
- Communications in Partial Differential Equations, 2006, v. 31, n. 1, p. 73, doi. 10.1080/03605300500358194
- Article
9
- Bulletin of the London Mathematical Society, 2007, v. 39, n. 6, p. 911, doi. 10.1112/blms/bdm082
- Article
10
- IMRN: International Mathematics Research Notices, 2012, v. 2012, n. 17, p. 4051, doi. 10.1093/imrn/rnr175
- Buttkewitz, Yvonne;
- Elsholtz, Christian;
- Ford, Kevin;
- Schlage-Puchta, Jan-Christoph
- Article
11
- Mathematical Proceedings of the Cambridge Philosophical Society, 2017, v. 163, n. 2, p. 341, doi. 10.1017/S0305004116001031
- PIKHURKO, OLEG;
- STADEN, KATHERINE;
- YILMA, ZELEALEM B.
- Article
12
- Theory of Probability & Its Applications, 2011, v. 55, n. 2, p. 342, doi. 10.1137/S0040585X97984851
- Article
13
- International Journal of Modern Physics D: Gravitation, Astrophysics & Cosmology, 2006, v. 15, n. 10, p. 1619, doi. 10.1142/S0218271806009005
- KLEINSCHMIDT, AXEL;
- NICOLAI, HERMANN
- Article
14
- Archive for Rational Mechanics & Analysis, 2007, v. 183, n. 1, p. 59, doi. 10.1007/s00205-006-0004-x
- Article
15
- Applicable Analysis, 2004, v. 83, n. 3, p. 309
- Krakostas, G.L.;
- Stević, S.
- Article
16
- Journal of the American Statistical Association, 2012, v. 107, n. 499, p. 1230, doi. 10.1080/01621459.2012.712419
- Gaugler, Trent;
- Akritas, MichaelG.
- Article
17
- Quarterly Journal of Mathematics, 2018, v. 69, n. 3, p. 1063, doi. 10.1093/qmath/hay012
- Das, Soumya;
- Khan, Rizwanur
- Article
18
- IMA Journal of Numerical Analysis, 2013, v. 33, n. 3, p. 1008, doi. 10.1093/imanum/drs027
- Garmanjani, R.;
- Vicente, L. N.
- Article
19
- Global Economic Review, 2016, v. 45, n. 3, p. 251, doi. 10.1080/1226508X.2016.1211811
- Arellano, Manuel;
- Hahn, Jinyong
- Article
20
- Journal of Nonlinear Sciences & Applications (JNSA), 2016, v. 9, n. 6, p. 4909, doi. 10.22436/jnsa.009.06.126
- Zhongwei Cao;
- Wenjie Cao;
- Xiaojie Xu;
- Qixing Han;
- Daqing Jiang
- Article
21
- Studia Scientiarum Mathematicarum Hungarica, 2018, v. 55, n. 4, p. 479, doi. 10.1556/012.2018.55.4.1414
- Article
22
- Applied Economics Letters, 2007, v. 14, n. 3, p. 191, doi. 10.1080/13504850500426202
- Halkos, George E.;
- Kevork, Ilias S.
- Article
23
- Journal of Statistical Physics, 2003, v. 110, n. 1/2, p. 247, doi. 10.1023/A:1021074813291
- Article
24
- Stochastics & Dynamics, 2004, v. 4, n. 2, p. 223, doi. 10.1142/S0219493704001024
- Article
25
- International Journal of Geometric Methods in Modern Physics, 2018, v. 15, n. 11, p. N.PAG, doi. 10.1142/S0219887818501955
- Güler, Fatma;
- Bayram, Ergi̇n;
- Kasap, Emi̇n
- Article
26
- Abstract & Applied Analysis, 2014, p. 1, doi. 10.1155/2014/931520
- Nengwei Zhang;
- Enbin Zhang;
- Fangzheng Gao
- Article