EBSCO Logo
Connecting you to content on EBSCOhost
Title

Additive In Vitro Antiplasmodial Effect of N-Alkyl and N-Benzyl-1,10-Phenanthroline Derivatives and Cysteine Protease Inhibitor E64.

Authors

Agus Wijayanti, Mahardika; Sholikhah, Eti Nurwening; Hadanu, Ruslin; Jumina, Jumina; Supargiyono, Supargiyono; Mustofa, Mustofa

Abstract

Potential new targets for antimalarial chemotherapy include parasite proteases, which are required for several cellular functions during the Plasmodium falciparum life cycle. Four new derivatives of N-alkyl and N-benzyl-1,10-phenanthroline have been synthesized. Those are (1)-N-methyl-1,10-phenanthrolinium sulfate, (1)-N-ethyl-1,10-phenanthrolinium sulfate, (1)-N-benzyl-1,10-phenanthrolinium chloride, and (1)-N-benzyl-1,10-phenanthrolinium iodide. Those compounds had potential antiplasmodial activity with IC50 values from 260.42 to 465.38 nM. Cysteine proteinase inhibitor E64 was used to investigate the mechanism of action of N-alkyl and N-benzyl-1,10-phenanthroline derivatives. A modified fixed-ratio isobologram method was used to study the in vitro interactions between the new compounds with either E64 or chloroquine. The interaction between N-alkyl and N-benzyl-1,10-phenanthroline derivatives and E64 was additive as well as their interactions with chloroquine were also additive. Antimalarial mechanism of chloroquine is mainly on the inhibition of hemozoin formation. As the interaction of chloroquine and E64 was additive, the results indicated that these new compounds had a mechanism of action by inhibiting Plasmodium proteases.

Subjects

DRUG therapy for malaria; PLASMODIUM falciparum; CYSTEINE proteinases; CHLOROQUINE; PROTEOLYTIC enzymes

Publication

Malaria Research & Treatment, 2010, p1

ISSN

2090-8075

Publication type

Academic Journal

DOI

10.4061/2010/540786

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved