We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Chemical Compositions and Experimental and Computational Modeling of the Anticancer Effects of Cnidocyte Venoms of Jellyfish <i>Cassiopea andromeda</i> and <i>Catostylus mosaicus</i> on Human Adenocarcinoma A549 Cells.
- Authors
Zare, Afshin; Afshar, Alireza; Khoradmehr, Arezoo; Baghban, Neda; Mohebbi, Gholamhossein; Barmak, Alireza; Daneshi, Adel; Bargahi, Afshar; Nabipour, Iraj; Almasi-Turk, Sahar; Arandian, Alireza; Zibaii, Mohammad Ismail; Latifi, Hamid; Tamadon, Amin
- Abstract
Nowadays, major attention is being paid to curing different types of cancers and is focused on natural resources, including oceans and marine environments. Jellyfish are marine animals with the ability to utilize their venom in order to both feed and defend. Prior studies have displayed the anticancer capabilities of various jellyfish. Hence, we examined the anticancer features of the venom of Cassiopea andromeda and Catostylus mosaicus in an in vitro situation against the human pulmonary adenocarcinoma (A549) cancer cell line. The MTT assay demonstrated that both mentioned venoms have anti-tumoral ability in a dose-dependent manner. Western blot analysis proved that both venoms can increase some pro-apoptotic factors and reduce some anti-apoptotic molecules that lead to the inducing of apoptosis in A549 cells. GC/MS analysis demonstrated some compounds with biological effects, including anti-inflammatory, antioxidant and anti-cancer activities. Molecular docking and molecular dynamic showed the best position of each biologically active component on the different death receptors, which are involved in the process of apoptosis in A549 cells. Ultimately, this study has proven that both venoms of C. andromeda and C. mosaicus have the capability to suppress A549 cells in an in vitro condition and they might be utilized in order to design and develop brand new anticancer agents in the near future.
- Publication
Marine drugs, 2023, Vol 21, Issue 3
- ISSN
1660-3397
- Publication type
Journal Article
- DOI
10.3390/md21030168