EBSCO Logo
Connecting you to content on EBSCOhost
Title

River water quality management using a fuzzy optimization model and the NSFWQI Index.

Authors

Ghorbani, Mohammad Kazem; Afshar, Abbas; Hamidifar, Hossein

Abstract

In this study, a novel multiple-pollutant waste load allocation (WLA) model for a river system is presented based on the National Sanitation Foundation Water Quality Index (NSFWQI). This study aims to determine the value of the quality index as the objective function integrated into the fuzzy set theory so that it could decrease the uncertainties associated with water quality goals as well as specify the river's water quality status rapidly. The simulation-optimization (S-O) approach is used for solving the proposed model. The QUAL2K model is used for simulating water quality in different parts of the river system and ant colony optimization (ACO) algorithm is applied as an optimizer of the model. The model performance was examined on a hypothetical river system with a length of 30 km and 17 checkpoints. The results show that for a given number of both the simulator model runs and the artificial ants, the maximum objective function will be obtained when the regulatory parameter of the ACO algorithm (i.e., q0) is considered equal to 0.6 and 0.7 (instead of 0.8 and 0.9). Also, the results do not depend on the exponent of the membership function (i.e., γ). Furthermore, the proposed methodology can find optimum solutions in a shorter time.

Subjects

ANT algorithms; WATER quality management; WATERSHEDS; SET theory; WATER quality; FUZZY sets

Publication

Water SA, 2021, Vol 47, Issue 1, p45

ISSN

0378-4738

Publication type

Academic Journal

DOI

10.17159/wsa/2021.v47.i1.9444

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved