EBSCO Logo
Connecting you to content on EBSCOhost
Title

Isoquercetin Ameliorates Osteoarthritis via Nrf2/NF‐κB Axis: An In Vitro and In Vivo Study.

Authors

Yu, He; Lou, Junsheng; Ni, Libin; Yan, Minwei; Zhu, Kewu; Mao, Su; Zhu, Jungao

Abstract

Osteoarthritis (OA) is a progressive joint disease characterized by extracellular matrix (ECM) degradation and inflammation, which is involved with pathological microenvironmental alterations induced by damaged chondrocytes. However, current therapies are not effective in alleviating the progression of OA. Isoquercetin is a natural flavonoid glycoside compound that has various pharmacological effects including anticancer, anti‐diabetes and blood lipid regulation. Previous evidence suggests that isoquercetin has anti‐inflammatory properties in various diseases, but its effect on OA has not been investigated yet. In this study, through western bolt, qRT‐PCR and ELISA, it was found that isoquercetin could reduce the increase of ADAMTS5, MMP13, COX‐2, iNOS and IL‐6 induced by IL‐1β, suggesting that isoquercetin could inhibit the inflammation and ECM degradation of chondrocytes. Through nuclear‐plasma separation technique, western blot and immunocytochemistry, it can be found that Nrf2 and NF‐κB pathways are activated in this process, and isoquercetin may rely on this process to play its protective role. In vivo, the results of X‐ray and SO staining show that intra‐articular injection of isoquercetin reduces the degradation of cartilage in the mouse OA model. In conclusion, the present work suggests that isoquercetin may benefit chondrocytes by regulating the Nrf2/NF‐κB signaling axis, which supports isoquercetin as a potential drug for the treatment of OA.

Subjects

JOINT diseases; EXTRACELLULAR matrix; BLOOD lipids; DISEASE progression; FLAVONOIDS; QUERCETIN

Publication

Chemical Biology & Drug Design, 2024, Vol 104, Issue 3, p1

ISSN

1747-0277

Publication type

Academic Journal

DOI

10.1111/cbdd.14620

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved