EBSCO Logo
Connecting you to content on EBSCOhost
Title

Genetic instability in lymphoblastoid cell lines expressing biallelic and monoallelic variants in the human MUTYH gene.

Authors

Grasso, Francesca; Giacomini, Elisa; Sanchez, Massimo; Degan, Paolo; Gismondi, Viviana; Mazzei, Filomena; Varesco, Liliana; Viel, Alessandra; Bignami, Margherita

Abstract

The MUTYH DNA glycosylase counteracts mutagenesis by removing adenine misincorporated opposite DNA 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG). Biallelic germline mutations in MUTYH cause the autosomal recessive MUTYH-associated polyposis (MAP). The impact on genetic instability of the p.Tyr179Cys and p.Arg245His MUTYH variants was evaluated in lymphoblastoid cell lines (LCLs) derived from MAP patients and their relatives in comparison to wild-type LCLs. No difference in MUTYH expression was identified between wild type and LCLs with the p.Tyr179Cys, while the p.Arg245His mutation was associated with an unstable MUTYH protein. LCLs homozygous for the p.Tyr179Cys or the p.Arg245His variant contained increased DNA 8-oxodG levels and exhibited a mutator phenotype at the PIG-A gene. The extent of the increased spontaneous mutation frequency was 3-fold (range 1.6- to 4.6-fold) in four independent LCLs carrying the p.Tyr179Cys variant, while a larger increase (6-fold) was observed in two p.Arg245His LCLs. A similar hypermutability and S-phase delay following treatment with KBrO3 was observed in LCLs homozygous for either variant. When genetic instability was investigated in monoallelic p.Arg245His carriers, mutant frequencies showed an increase which is intermediate between wild-type and homozygous cells, whereas the mutator effect in heterozygous p.Tyr179Cys LCLs was similar to that in homozygotes. These findings indicate that the type of MUTYH mutation can affect the extent of genome instability associated with MUTYH inactivation. In addition, the mild spontaneous mutator phenotype observed in monoallelic carriers highlights the biological importance of this gene in the protection of the genome against endogenous DNA damage.

Publication

Human Molecular Genetics, 2014, Vol 23, Issue 14, p3843

ISSN

0964-6906

Publication type

Academic Journal

DOI

10.1093/hmg/ddu097

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved