EBSCO Logo
Connecting you to content on EBSCOhost
Title

Beyond Human Perception: Sexual Dimorphism in Hand and Wrist Radiographs Is Discernible by a Deep Learning Model.

Authors

Yune, Sehyo; Lee, Hyunkwang; Kim, Myeongchan; Tajmir, Shahein H.; Gee, Michael S.; Do, Synho

Abstract

Despite the well-established impact of sex and sex hormones on bone structure and density, there has been limited description of sexual dimorphism in the hand and wrist in the literature. We developed a deep convolutional neural network (CNN) model to predict sex based on hand radiographs of children and adults aged between 5 and 70 years. Of the 1531 radiographs tested, the algorithm predicted sex correctly in 95.9% (κ = 0.92) of the cases. Two human radiologists achieved 58% (κ = 0.15) and 46% (κ = − 0.07) accuracy. The class activation maps (CAM) showed that the model mostly focused on the 2nd and 3rd metacarpal base or thumb sesamoid in women, and distal radioulnar joint, distal radial physis and epiphysis, or 3rd metacarpophalangeal joint in men. The radiologists reviewed 70 cases (35 females and 35 males) labeled with sex along with heat maps generated by CAM, but they could not find any patterns that distinguish the two sexes. A small sample of patients (n = 44) with sexual developmental disorders or transgender identity was selected for a preliminary exploration of application of the model. The model prediction agreed with phenotypic sex in only 77.8% (κ = 0.54) of these cases. To the best of our knowledge, this is the first study that demonstrated a machine learning model to perform a task in which human experts could not fulfill.

Subjects

HAND radiography; ALGORITHMS; BONE growth; CONFIDENCE intervals; ARTIFICIAL neural networks; SEX distribution; DESCRIPTIVE statistics; DEEP learning; ADULTS; CHILDREN

Publication

Journal of Digital Imaging, 2019, Vol 32, Issue 4, p665

ISSN

0897-1889

Publication type

Academic Journal

DOI

10.1007/s10278-018-0148-x

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved