We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Controlling the type I error rate in two-stage sequential adaptive designs when testing for average bioequivalence.
- Authors
Maurer, Willi; Jones, Byron; Chen, Ying
- Abstract
In a 2×2 crossover trial for establishing average bioequivalence (ABE) of a generic agent and a currently marketed drug, the recommended approach to hypothesis testing is the two one-sided test (TOST) procedure, which depends, among other things, on the estimated within-subject variability. The power of this procedure, and therefore the sample size required to achieve a minimum power, depends on having a good estimate of this variability. When there is uncertainty, it is advisable to plan the design in two stages, with an interim sample size reestimation after the first stage, using an interim estimate of the within-subject variability. One method and 3 variations of doing this were proposed by Potvin et al. Using simulation, the operating characteristics, including the empirical type I error rate, of the 4 variations (called Methods A, B, C, and D) were assessed by Potvin et al and Methods B and C were recommended. However, none of these 4 variations formally controls the type I error rate of falsely claiming ABE, even though the amount of inflation produced by Method C was considered acceptable. A major disadvantage of assessing type I error rate inflation using simulation is that unless all possible scenarios for the intended design and analysis are investigated, it is impossible to be sure that the type I error rate is controlled. Here, we propose an alternative, principled method of sample size reestimation that is guaranteed to control the type I error rate at any given significance level. This method uses a new version of the inverse-normal combination of p-values test, in conjunction with standard group sequential techniques, that is more robust to large deviations in initial assumptions regarding the variability of the pharmacokinetic endpoints. The sample size reestimation step is based on significance levels and power requirements that are conditional on the first-stage results. This necessitates a discussion and exploitation of the peculiar properties of the power curve of the TOST testing procedure. We illustrate our approach with an example based on a real ABE study and compare the operating characteristics of our proposed method with those of Method B of Povin et al.
- Publication
Statistics in medicine, 2018, Vol 37, Issue 10, p1587
- ISSN
1097-0258
- Publication type
Journal Article
- DOI
10.1002/sim.7614