EBSCO Logo
Connecting you to content on EBSCOhost
Title

Photoinduced Iron-Based Water-Induced Phase Separable Catalysis (WPSC) ICAR ATRP of Poly(ethylene glycol) Methyl Ether Methacrylate.

Authors

Wu, Jian; Zhang, Bingjie; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

Abstract

Iron-mediated atom transfer radical polymerization (ATRP) has gained extensive attention because of the superiority of iron catalysts, such as low toxicity, abundant reserves, and good biocompatibility. Herein, a practical iron catalyst recycling system, photoinduced iron-based water-induced phase separable catalysis ATRP with initiators for continuous activator regeneration, at room temperature is developed for the first time. In this polymerization system, the polymerization is conducted in homogenous solvents consisting of p-xylene and ethanol, using commercially available 5,10,15,20-tetraphenyl-21H,23H-porphine iron(III) chloride as the iron catalyst, ethyl 2-bromophenylacetate as the ATRP initiator, 2,4,6-trimethylbenzoyl diphenylphosphine oxide as the photoinitiator, and poly(ethylene glycol) methyl ether methacrylate as the model hydrophilic monomer. After polymerization, a certain amount of water is added to induce the phase separation so that the catalyst can be separated and recycled in p-xylene phase with very low residual metal complexes (<12 ppm) in the resultant polymers even after six times recycle experiments.

Subjects

PHOTOINDUCED electron transfer; PHASE separation; CATALYSIS; POLYETHYLENE glycol; PHENYLACETATES

Publication

Macromolecular Rapid Communications, 2017, Vol 38, Issue 12, pn/a

ISSN

1022-1336

Publication type

Academic Journal

DOI

10.1002/marc.201700116

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved