EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Ameliorative Effect of Marine Macroalgae on Carbon Tetrachloride-Induced Hepatic Fibrosis and Associated Complications in Rats.

Authors

AZAM, Maria; HIRA, Khan; QURESHI, Shamim A.; KHATOON, Nasira; ARA, Jehan; EHTESHAMUL-HAQUE, Syed

Abstract

Objectives: Liver fibrosis is one of the serious health concern around the globe. Persistent exposure to drugs, toxicants, and pathogens may induce liver fibrosis. Marine macroalgae are globally consumed because of nutritive and medicinal value. This study was conducted to evaluate the protective role of two seaweeds Padina pavonia and Caulerpa racemosa in carbon tetrachloride (CCl4)-induced liver fibrosis in rats. Materials and Methods: Animal model of hepatic fibrosis was developed by injecting 40% CCl4 dissolved in olive oil [2 mL/kg, body weight (b.w.), i.p.] on alternate days for 30 days. Water extracts (WE) [200 mg/kg b.w., p.o.] of P. pavonia and C. racemosa were given to rats daily for 30 days. On day 31, rats were sacrificed after 12 h fasting. Serum was used for biochemical estimation. 10% neutral buffered formalin was used to preserve the liver sample for histopathological examination, while the other portion was used for the preparation of tissue homogenate to estimate antioxidant enzymes and malondialdehyde levels. Results: WEs of both marine macro-algae significantly abrogate the elevated serum concentrations of aminotransferases (alanine aminotransferase and aspartate aminotransferases), alkaline phosphatase and lactate dehydrogenase along with a substantial (p<0.05) reduction in serum bilirubin levels. They also showed positive effects on oxidative stress, evident by improvement in reduced glutathione, catalase, and glutathione peroxidase activities and down regulation of lipid peroxidation level, with stabilizing the destructive cellular morphology of liver induced by repeated CCl4 injection. Both algal extracts also improved kidney function (urea and creatinine) along with lipid metabolism (triglycerides and cholesterol). Conclusion: WE of C. racemosa has shown great potential in attenuating liver fibrosis induced by CCl4.

Subjects

HEPATIC fibrosis; ASPARTATE aminotransferase; MARINE algae; LACTATE dehydrogenase; GLUTATHIONE peroxidase; LIPID metabolism; ALANINE aminotransferase; OLIVE oil

Publication

Turkish Journal of Pharmaceutical Sciences, 2022, Vol 19, Issue 2, p116

ISSN

1304-530X

Publication type

Academic Journal

DOI

10.4274/tjps.galenos.2021.08683

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved