We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Hierarchical Cs–Pollucite Nanozeolite Modified with Novel Organosilane as an Excellent Solid Base Catalyst for Claisen–Schmidt Condensation of Benzaldehyde and Acetophenone.
- Authors
Mohammad S., Aleid Ghadah; Khoerunnisa, Fitri; Rigolet, Severinne; Daou, T. Jean; Ling, Tau-Chuan; Ng, Eng-Poh
- Abstract
Cs–pollucite can be a potential solid base catalyst due to the presence of (Si-O-Al)−Cs+ basic sites. However, it severely suffers from molecular diffusion and pore accessibility problems due to its small micropore opening. Herein, we report the use of new organosilane, viz. dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (TPOAC), as a promising pore-expanding agent to develop the hierarchical structure in nanosized Cs–pollucite. In respect to this, four different amounts of TPOAC were added during the synthesis of hierarchical Cs–pollucite (CP-x, x = 0, 0.3, 1.0, or 2.0, where x is the molar ratio of TPOAC) in order to investigate the effects of TPOAC in the crystallization process of Cs–pollucite. The results show that an addition of TPOAC altered the physico-chemical and morphological properties of hierarchical Cs–pollucite, such as the crystallinity, crystallite size, pore size distribution, surface areas, pore volume, and surface basicity. The prepared solids were also tested in Claisen–Schmidt condensation of benzaldehyde and acetophenone, where 82.2% of the conversion and 100% selectivity to chalcone were achieved by the CP-2.0 catalyst using non-microwave instant heating (200 °C, 100 min). The hierarchical CP-2.0 nanocatalyst also showed better catalytic performance than other homogenous and heterogeneous catalysts and displayed a high catalyst reusability with no significant deterioration in the catalytic performance even after five consecutive reaction runs.
- Subjects
BASE catalysts; DIFFUSION; ACETOPHENONE; PORE size distribution; CONDENSATION; BENZALDEHYDE
- Publication
Processes, 2020, Vol 8, Issue 1, p96
- ISSN
2227-9717
- Publication type
Academic Journal
- DOI
10.3390/pr8010096