EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Energy-Saving Analysis of Epichlorohydrin Plant Based on Entransy.

Authors

Ma, Wenjiao; Xiang, Shuguang; Xia, Li

Abstract

To improve energy efficiency and to recover energy, various mathematical models, such as pinch analysis, entropy analysis, exergy analysis, and entransy analysis, have been established to analyze heat transfer networks. In this study, these methods were applied to analyze the energy-saving effect of the epichlorohydrin unit in a certain enterprise. The results showed that when the minimum heat transfer temperature difference (ΔTmin) was 10K, 15K, and 20K, the efficiencies of the second law of thermodynamics calculated by entropy analysis were 88.02%, 93.52%, and 99.49%, respectively. The analytical method calculated an efficiency of 61.01%, 59.28%, and 57.27%, respectively, with public works' savings of 16.59%, 14.86%, and 12.02%. The pinch analysis method achieved public works' savings of 22.80%, 21.50%, and 19.35%. The entransy analysis method calculated an entransy transfer efficiency of 42.81%, 42.13%, and 41.00%, respectively, with public works' savings of 19.41%, 18.01%, and 15.70%. Based on the results, entropy analysis was found to be contrary to the principle of minimum entropy production. Exergy analysis was not able to establish a heat transfer network. The pinch analysis method was not suitable for determining the thermal efficiency of a heat transfer network as the criterion for evaluating energy saving. On the other hand, the entransy analysis method was able to establish a heat transfer network and evaluate the heat utilization of the network by entransy transfer efficiency. Overall, the data analysis was reasonable.

Subjects

SECOND law of thermodynamics; PINCH analysis; HEAT transfer; EPICHLOROHYDRIN; THERMAL efficiency; PUBLIC works

Publication

Processes, 2023, Vol 11, Issue 3, p954

ISSN

2227-9717

Publication type

Academic Journal

DOI

10.3390/pr11030954

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved