We assessed a reactivity of chloroacetyl-modified tripeptides consisting of various amino acid residues (Cl-3X) and mercaptoundecahydrododecaborate (BSH) by converting Cl-3X to its reactant (BS-3X). We showed that the Cl-3X consisting of basic amino acid residues (e.g., Arg) reacted with BSH effectively and its conversion decreased as the number of Arg residues in the Cl-3X decreased. Furthermore, a reactivity of the peptides with introduction of an alkyl linker between the triarginine and the chloroacetyl group (Cl-Cn-3R) with BSH decreased with increasing alkyl linker length. These results indicate that an electrostatic attraction of positively charged amino acid residues in the tripeptides and negatively charged BSH causes BSH to gather in a vicinity of the chloroacetyl group, resulting in an accelerated reaction. This work should aid a development of new boron agents using BSH in boron neutron capture therapy.