We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Visualizing Plant Disease Distribution and Evaluating Model Performance for Deep Learning Classification with YOLOv8.
- Authors
Ghafar, Abdul; Chen, Caikou; Atif Ali Shah, Syed; Ur Rehman, Zia; Rahman, Gul
- Abstract
This paper presents a novel methodology for plant disease detection using YOLOv8 (You Only Look Once version 8), a state-of-the-art object detection model designed for real-time image classification and recognition tasks. The proposed approach involves training a custom YOLOv8 model to detect and classify various plant conditions accurately. The model was evaluated using a testing subset to measure its performance in detecting different plant diseases. To ensure the model's robustness and generalizability beyond the training dataset, it was further tested on a set of unseen images sourced from Google Images. This additional testing aimed to assess the model's effectiveness in real-world scenarios, where it might encounter new data. The evaluation results were auspicious, demonstrating the model's capability to classify plant conditions, such as diseases, with high accuracy. Moreover, the use of YOLOv8 offers significant improvements in speed and precision, making it suitable for real-time plant disease monitoring applications. The findings highlight the potential of this methodology for broader agricultural applications, including early disease detection and prevention.
- Subjects
PLANT diseases; CONVOLUTIONAL neural networks; IMAGE recognition (Computer vision); EARLY diagnosis; AGRICULTURE; DEEP learning
- Publication
Pathogens, 2024, Vol 13, Issue 12, p1032
- ISSN
2076-0817
- Publication type
Academic Journal
- DOI
10.3390/pathogens13121032