EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

A Graphic Method for Detecting Multiple Roots Based on Self-Maps of the Hopf Fibration and Nullity Tolerances.

Authors

Extreminana-Aldana, José Ignacio; Gutiérrez-Jiménez, José Manuel; Hernández-Paricio, Luis Javier; Rivas-Rodríguéz, María Teresa

Abstract

The aim of this paper is to study, from a topological and geometrical point of view, the iteration map obtained by the application of iterative methods (Newton or relaxed Newton's method) to a polynomial equation. In fact, we present a collection of algorithms that avoid the problem of overflows caused by denominators close to zero and the problem of indetermination which appears when simultaneously the numerator and denominator are equal to zero. This is solved by working with homogeneous coordinates and the iteration of self-maps of the Hopf fibration. As an application, our algorithms can be used to check the existence of multiple roots for polynomial equations as well as to give a graphical representation of the union of the basins of attraction of simple roots and the union of the basins of multiple roots. Finally, we would like to highlight that all the algorithms developed in this work have been implemented in Julia, a programming language with increasing use in the mathematical community.

Subjects

NEWTON-Raphson method; GRAPHIC methods; LABOR union recognition; PROGRAMMING languages

Publication

Mathematics (2227-7390), 2021, Vol 9, Issue 16, p1914

ISSN

2227-7390

Publication type

Academic Journal

DOI

10.3390/math9161914

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved