EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Development and Up-Scaling of Electrochemical Production and Mild Thermal Reduction of Graphene Oxide.

Authors

Ostermann, Markus; Velicsanyi, Peter; Bilotto, Pierluigi; Schodl, Juergen; Nadlinger, Markus; Fafilek, Guenter; Lieberzeit, Peter A.; Valtiner, Markus

Abstract

To reduce the global emissions of CO 2 , the aviation industry largely relies on new light weight materials, which require multifunctional coatings. Graphene and its derivatives are particularly promising for combining light weight applications with functional coatings. Although they have proven to have outstanding properties, graphene and its precursor graphene oxide (GO) remain far from application at the industrial scale since a comprehensive protocol for mass production is still lacking. In this work, we develop and systematically describe a sustainable up-scaling process for the production of GO based on a three-step electrochemical exfoliation method. Surface characterization techniques (XRD, XPS and Raman) allow the understanding of the fast exfoliation rates obtained, and of high conductivities that are up to four orders of magnitude higher compared to GO produced via the commonly used modified Hummers method. Furthermore, we show that a newly developed mild thermal reduction at 250 °C is sufficient to increase conductivity by another order of magnitude, while limiting energy requirements. The proposed GO powder protocol suggests an up-scaling linear relation between the amount of educt surface and volume of electrolyte. This may support the mass production of GO-based coatings for the aviation industry, and address challenges such as low weight, fire, de-icing and lightning strike protection.

Subjects

CARBON emissions; SURFACE analysis; MASS production; LIGHTNING protection; MANUFACTURING processes; GREENHOUSE gases

Publication

Materials (1996-1944), 2022, Vol 15, Issue 13, p4639

ISSN

1996-1944

Publication type

Academic Journal

DOI

10.3390/ma15134639

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved