EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Supercritical CO 2 Curing of Resource-Recycling Secondary Cement Products Containing Concrete Sludge Waste as Main Materials.

Authors

Kim, Min-Sung; Sim, Sang-Rak; Ryu, Dong-Woo

Abstract

This study aims to develop highly durable, mineral carbonation-based, resource-recycling, secondary cement products based on supercritical carbon dioxide (CO2) curing as part of carbon capture utilization technology that permanently fixes captured CO2. To investigate the basic characteristics of secondary cement products containing concrete sludge waste (CSW) as the main materials after supercritical CO2 curing, the compressive strengths of the paste and mortar (fabricated by using CSW as the main binder), ordinary Portland cement, blast furnace slag powder, and fly ash as admixtures were evaluated to derive the optimal mixture for secondary products. The carbonation curing method that can promote the surface densification (intensive CaCO3 formation) of the hardened body within a short period of time using supercritical CO2 curing was defined as "Lean Carbonation". The optimal curing conditions were derived by evaluating the compressive strength and durability improvement effects of applying Lean Carbonation to secondary product specimens. As a result of the experiment, for specimens subjected to Lean Carbonation, compressive strength increased by up to 12%, and the carbonation penetration resistance also increased by more than 50%. The optimal conditions for Lean Carbonation used to improve compressive strength and durability were found to be 35 °C, 80 bar, and 1 min.

Subjects

MORTAR; CONCRETE waste; CARBON dioxide; WASTE products; CONCRETE products; SUPERCRITICAL carbon dioxide

Publication

Materials (1996-1944), 2022, Vol 15, Issue 13, p4581

ISSN

1996-1944

Publication type

Academic Journal

DOI

10.3390/ma15134581

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved