EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Text Mining Based Approach for Customer Sentiment and Product Competitiveness Using Composite Online Review Data.

Authors

Wen, Zhanming; Chen, Yanjun; Liu, Hongwei; Liang, Zhouyang

Abstract

We aimed to provide a realistic portrayal of customer sentiment and product competitiveness, as well as to inspire businesses to optimise their products and enhance their services. This paper uses 119,190 pairs of real composite review data as a corpus to examine customer sentiment analysis and product competitiveness. The research is conducted by combining TF-IDF text mining with a time-phase division through the k-means clustering method. The study identified 'quality', 'taste', 'appearance packaging', 'logistics', 'prices', 'service', 'evaluations', and 'customer loyalty' as the commodity dimensions that customers are most concerned about. These dimensions should therefore serve as the primary entry point for improving the commodity and understanding customers. A review of customer feedback reveals that the composite reviews can be divided into three time stages. Furthermore, the sentiment expressed by customers can become increasingly negative over time. The product competitiveness based on the composite review can be characterised by four regional quadrants, such as 'Advantage Area', 'Struggle Area', 'Opportunity Area', and 'Waiting Area', and merchants can target these areas to improve product competitiveness according to the dimensional distribution. In the future, it will also be possible to take customer demographics into account in order to gain a deeper understanding of the customer base.

Subjects

TEXT mining; SENTIMENT analysis; CUSTOMER feedback; K-means clustering; CUSTOMER loyalty

Publication

Journal of Theoretical & Applied Electronic Commerce Research, 2024, Vol 19, Issue 3, p1776

ISSN

0718-1876

Publication type

Academic Journal

DOI

10.3390/jtaer19030087

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved