EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Leg Mechanism Design and Motion Performance Analysis for an Amphibious Crab-like Robot.

Authors

Hu, Shihao; Ma, Xinmeng; Chen, Xi; Xin, Mingfei; Tian, Changda; Liu, Kaixin; Li, Sicen; Wang, Liquan; Tang, Qinyun; Liu, Zhaojin; Ding, Mingxuan; Li, Jiawei

Abstract

Bionic-legged robots draw inspiration from animal locomotion methods and structures, demonstrating the potential to traverse irregular and unstructured environments. The ability of Portunus trituberculatus (Portunus) to run flexibly and quickly in amphibious environments inspires the design of systems and locomotion methods for amphibious robots. This research describes an amphibious crab-like robot based on Portunus and designs a parallel leg mechanism for the robot based on biological observations. The research creates the group and sequential gait commonly used in multiped robots combined with the form of the robot's leg mechanism arrangement. This research designed the parallel leg mechanism and modeled its dynamics. Utilizing the outcomes of the dynamics modeling, we calculate the force and torque exerted on each joint of the leg mechanism during group gait and sequential gait when the robot is moving with a load. This analysis aims to assess the performance of the robot's motion. Finally, a series of performance evaluation experiments are conducted on land and underwater, which show that the amphibious crab-like robot has good walking performance. The crab-like robot can perform forward, backward, left, and right walking well using group and sequential gaits. Simultaneously, the crab-like robot showcases faster movement in group gaits and a more substantial load capacity in sequential gaits.

Subjects

MOTION analysis; ANIMAL locomotion; ROBOT motion; JOINTS (Anatomy); ROBOTS; LIVE loads; PARALLEL robots; LEG

Publication

Journal of Marine Science & Engineering, 2024, Vol 12, Issue 1, p10

ISSN

2077-1312

Publication type

Academic Journal

DOI

10.3390/jmse12010010

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved