EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Assessing the Validity of Diffusion Weighted Imaging Models: A Study in Patients with Post-Surgical Lower-Grade Glioma.

Authors

van der Hoorn, Anouk; Manusiwa, Lesley E.; van der Weide, Hiske L.; Sinnige, Peter F.; Huitema, Rients B.; Brouwer, Charlotte L.; Klos, Justyna; Borra, Ronald J. H.; Dierckx, Rudi A. J. O.; Rakers, Sandra E.; Buunk, Anne M.; Spikman, Joke M.; Renken, Remco J.; Bosma, Ingeborg; Enting, Roelien H.; Kramer, Miranda C. A.; van der Weijden, Chris W. J.

Abstract

Background: Diffusion weighted imaging (DWI) is used for monitoring purposes for lower-grade glioma (LGG). While the apparent diffusion coefficient (ADC) is clinically used, various DWI models have been developed to better understand the micro-environment. However, the validity of these models and how they relate to each other is currently unknown. Therefore, this study assesses the validity and agreement of these models. Methods: Fourteen post-treatment LGG patients and six healthy controls (HC) underwent DWI MRI on a 3T MRI scanner. DWI processing included diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), white matter tract integrity (WMTI), neurite orientation dispersion and density imaging (NODDI), and fixel-based analysis (FBA). Validity was assessed by delineating surgical cavity, peri-surgical cavity, and normal-appearing white matter (NAWM) in LGG patients, and white matter (WM) in HC. Spearman correlation assessed the agreement between DWI parameters. Results: All obtained parameters differed significantly across tissue types. Remarkably, WMTI showed that intra-axonal diffusivity was high in the surgical cavity and low in NAWM and WM. Most DWI parameters correlated well with each other, except for WMTI-derived intra-axonal diffusivity. Conclusion: This study shows that all parameters relevant for tumour monitoring and DWI-derived parameters for axonal fibre-bundle integrity (except WMTI-IAS-Da) could be used interchangeably, enhancing inter-DWI model interpretability.

Subjects

DIFFUSION tensor imaging; WHITE matter (Nerve tissue); IMAGE analysis; DIFFUSION coefficients; RANK correlation (Statistics)

Publication

Journal of Clinical Medicine, 2025, Vol 14, Issue 2, p551

ISSN

2077-0383

Publication type

Academic Journal

DOI

10.3390/jcm14020551

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved