Resistance to tyrosine kinase inhibitors (TKIs, e.g., sorafenib and lenvatinib) presents a significant hurdle for hepatocellular carcinoma (HCC) treatment, underscoring the need to decipher the underlying mechanisms for improved therapeutic strategies. MicroRNAs (miRNAs) have emerged as critical modulators in HCC progression and TKI resistance. In this study, we report a positive correlation between the expression levels of a tumor suppressor miRNA, miR-142-3p, and increased sensitivity to sorafenib and lenvatinib, supported by clinical data from the BIOSTORM HCC cohort. Overexpression of miR-142-3p in TKI-resistant HCC cells significantly inhibited proliferation and colony formation, induced apoptosis, increased cell cycle arrest at the G2 phase, and reduced migration and invasion by reversing epithelial–mesenchymal transition. Notably, combining miR-142-3p with lenvatinib synergistically inhibited growth in both inherent and acquired TKI-resistant HCC cells by modulating critical signaling pathways, including STAT3, PI3K/AKT, MAPK, YAP1, and by impeding autophagic influx. RNA-sequencing of a TKI-resistant HCC cell line ± miR-142-3p overexpression identified YES1 and TWF1 as direct downstream target genes of miR-142-3p, both of which are key genes associated with drug resistance in HCC. Small interfering RNA (siRNA)-mediated knockdown of these genes mirrored the antitumor effects of miR-142-3p and enhanced TKI sensitivity, with YES1 knockdown decreasing YAP1 phosphorylation, and TWF1 knockdown inhibiting autophagy. Collectively, these findings indicate that restoring miR-142-3p expression or targeting its downstream effectors YES1 and TWF1 offers a promising strategy to overcome drug resistance and improve therapeutic outcome in HCC.