We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Lymphatic Dissemination in Prostate Cancer: Features of the Transcriptomic Profile and Prognostic Models.
- Authors
Pudova, Elena A.; Kobelyatskaya, Anastasiya A.; Katunina, Irina V.; Snezhkina, Anastasiya V.; Fedorova, Maria S.; Pavlov, Vladislav S.; Bakhtogarimov, Ildar R.; Lantsova, Margarita S.; Kokin, Sergey P.; Nyushko, Kirill M.; Alekseev, Boris Ya.; Kalinin, Dmitry V.; Melnikova, Nataliya V.; Dmitriev, Alexey A.; Krasnov, George S.; Kudryavtseva, Anna V.
- Abstract
Radical prostatectomy is the gold standard treatment for prostate cancer (PCa); however, it does not always completely cure PCa, and patients often experience a recurrence of the disease. In addition, the clinical and pathological parameters used to assess the prognosis and choose further tactics for treating a patient are insufficiently informative and need to be supplemented with new markers. In this study, we performed RNA-Seq of PCa tissue samples, aimed at identifying potential prognostic markers at the level of gene expression and miRNAs associated with one of the key signs of cancer aggressiveness—lymphatic dissemination. The relative expression of candidate markers was validated by quantitative PCR, including an independent sample of patients based on archival material. Statistically significant results, derived from an independent set of samples, were confirmed for miR-148a-3p and miR-615-3p, as well as for the CST2, OCLN, and PCAT4 genes. Considering the obtained validation data, we also analyzed the predictive value of models based on various combinations of identified markers using algorithms based on machine learning. The highest predictive potential was shown for the "CST2 OCLN pT" model (AUC = 0.863) based on the CatBoost Classifier algorithm.
- Subjects
CANCER invasiveness; PROGNOSTIC models; PROSTATE cancer; TRANSCRIPTOMES; RADICAL prostatectomy; LUTEINIZING hormone releasing hormone
- Publication
International Journal of Molecular Sciences, 2023, Vol 24, Issue 3, p2418
- ISSN
1661-6596
- Publication type
Academic Journal
- DOI
10.3390/ijms24032418