EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Human In Situ Study of the effect of Bis(2-Methacryloyloxyethyl) Dimethylammonium Bromide Immobilized in Dental Composite on Controlling Mature Cariogenic Biofilm.

Authors

Melo, Mary Anne S.; Weir, Michael D.; Passos, Vanara F.; Rolim, Juliana P. M.; Lynch, Christopher D.; Rodrigues, Lidiany K. A.; Xu, Hockin H. K.

Abstract

Cariogenic oral biofilms cause recurrent dental caries around composite restorations, resulting in unprosperous oral health and expensive restorative treatment. Quaternary ammonium monomers that can be copolymerized with dental resin systems have been explored for the modulation of dental plaque biofilm growth over dental composite surfaces. Here, for the first time, we investigated the effect of bis(2-methacryloyloxyethyl) dimethylammonium bromide (QADM) on human overlying mature oral biofilms grown intra-orally in human participants for 7–14 days. Seventeen volunteers wore palatal devices containing composite specimens containing 10% by mass of QADM or a control composite without QADM. After 7 and 14 days, the adherent biofilms were collected to determine bacterial counts via colony-forming unit (CFU) counts. Biofilm viability, chronological changes, and percentage coverage were also determined through live/dead staining. QADM composites caused a significant inhibition of Streptococcus mutans biofilm formation for up to seven days. No difference in the CFU values were found for the 14-day period. Our findings suggest that: (1) QADM composites were successful in inhibiting 1–3-day biofilms in the oral environment in vivo; (2) QADM significantly reduced the portion of the S. mutans group; and (3) stronger antibiofilm activity is required for the control of mature long-term cariogenic biofilms. Contact-killing strategies using dental materials aimed at preventing or at least reducing high numbers of cariogenic bacteria seem to be a promising approach in patients at high risk of the recurrence of dental caries around composites.

Subjects

BIOMOLECULES; WERNER'S syndrome; PROTEINS; ORGANIC compounds; ABNORMAL proteins

Publication

International Journal of Molecular Sciences, 2018, Vol 19, Issue 11, p3443

ISSN

1661-6596

Publication type

Academic Journal

DOI

10.3390/ijms19113443

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved