EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Effects of Soybean Isoflavones on the Growth Performance and Lipid Metabolism of the Juvenile Chinese Mitten Crab Eriocheir sinensis.

Authors

Shi, Mengyu; He, Yisong; Zheng, Jiajun; Xu, Yang; Tan, Yue; Jia, Li; Chen, Liqiao; Ye, Jinyun; Qi, Changle

Abstract

In order to study the effects of soybean isoflavones on the growth performance and lipid metabolism of juvenile Chinese mitten crabs, six experimental diets were formulated by gradient supplementation with 0%, 0.004% and 0.008% soybean isoflavones at different dietary lipid levels (10% and 15%). The groups were named as follows: NF-0 group (10% fat and 0% SIFs), NF-0.004 group (10% fat and 0.004% SIFs), NF-0.008 group (10% fat and 0.008% SIFs), HF-0 group (15% fat and 0% SIFs), HF-0.004 group (15% fat and 0.004% SIFs) and HF-0.008 group (15% fat and 0.008% SIFs). All crabs with an initial weight of 0.4 ± 0.03 g were fed for 8 weeks. The results showed that dietary supplementation with 0.004% or 0.008% SIFs significantly increased the weight gain and specific growth rate of crabs. Diets supplemented with 0.004% or 0.008% SIFs significantly reduced the content of non-esterified free fatty acids and triglycerides in the hepatopancreas of crabs at the 10% dietary lipid level. Dietary SIFs significantly decreased the relative mRNA expressions of elongase of very-long-chain fatty acids 6 (elovl6), triglyceride lipase (tgl), sterol regulatory element-binding protein 1 (srebp-1), carnitine palmitoyltransferase-1a (cpt-1a), fatty acid transporter protein 4 (fatp4), carnitine palmitoyltransferase-2 (cpt-2), Δ9 fatty acyl desaturase (Δ9 fad), carnitine palmitoyltransferase-1b (cpt-1b), fatty acid-binding protein 10 (fabp10) and microsomal triglyceride transfer protein (mttp) in the hepatopancreas of crabs. At the 15% dietary lipid level, 0.008% SIFs significantly increased the relative mRNA expressions of fatty acid-binding protein 3 (fabp3), carnitine acetyltransferase (caat), fatp4, fabp10, tgl, cpt-1a, cpt-1b and cpt-2 and significantly down-regulated the relative mRNA expressions of Δ9 fad and srebp-1. In conclusion, SIFs can improve the growth and utilization of a high-fat diet by inhibiting genes related to lipid synthesis and promoting lipid decomposition in juvenile Chinese mitten crabs.

Subjects

STEROL regulatory element-binding proteins; CHINESE mitten crab; FATTY acid-binding proteins; FREE fatty acids; LIPID synthesis; FISH feeds

Publication

Fishes (MDPI AG), 2024, Vol 9, Issue 9, p335

ISSN

2410-3888

Publication type

Academic Journal

DOI

10.3390/fishes9090335

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved