EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

A Hybrid Modified Deep Learning Architecture for Intrusion Detection System with Optimal Feature Selection.

Authors

Kumar, Neeraj; Sharma, Sanjeev

Abstract

With the exponentially evolving trends in technology, IoT networks are vulnerable to serious security issues, allowing intruders to break into networks without authorization and manipulate the data. Their actions can be recognized and avoided by using a system that can detect intrusions. This paper presents a hybrid intelligent system and inverted hour-glass-based layered network classifier for feature selection and classification processes, respectively. To accomplish this task, three different datasets have been utilized in the proposed model for identifying old and new attacks. Moreover, a hybrid optimization feature selection technique has been implemented for selecting only those features that can enhance the accuracy of the detection rate. Finally, the classification is performed by using the inverted hour-glass-based layered network model in which data are up-sampled with the increase in the number of layers for effective training. Data up-sampling is performed when small subset of datapoints are observed for any class, which in turn helps in improving the accuracy of the proposed model. The proposed model demonstrated an accuracy of 99.967%, 99.567%, and 99.726% for NSL-KDD, KDD-CUP99, and UNSW NB15 datasets, respectively, which is significantly better than the traditional CNID model. These results demonstrate that our model can detect different attacks with high accuracy and is expected to show good results for new datasets as well. Additionally, to reduce the computational cost of the proposed model, we have implemented it on CPU-based core i3 processors, which are much cheaper than GPU processors.

Subjects

DEEP learning; FEATURE selection; ARTIFICIAL intelligence; INTERNET of things

Publication

Electronics (2079-9292), 2023, Vol 12, Issue 19, p4050

ISSN

2079-9292

Publication type

Academic Journal

DOI

10.3390/electronics12194050

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved