EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Radio-Frequency-Identification-Based 3D Human Pose Estimation Using Knowledge-Level Technique.

Authors

Altaf, Saud; Haroon, Muhammad; Ahmad, Shafiq; Nasr, Emad Abouel; Zaindin, Mazen; Huda, Shamsul; Rehman, Zia ur

Abstract

Human pose recognition is a new field of study that promises to have widespread practical applications. While there have been efforts to improve human position estimation with radio frequency identification (RFID), no major research has addressed the problem of predicting full-body poses. Therefore, a system that can determine the human pose by analyzing the entire human body, from the head to the toes, is required. This paper presents a 3D human pose recognition framework based on ANN for learning error estimation. A workable laboratory-based multisensory testbed has been developed to verify the concept and validation of results. A case study was discussed to determine the conditions under which an acceptable estimation rate can be achieved in pose analysis. Using the Butterworth filtering technique, environmental factors are de-noised to reduce the system's computational cost. The acquired signal is then segmented using an adaptive moving average technique to determine the beginning and ending points of an activity, and significant features are extracted to estimate the activity of each human pose. Experiments demonstrate that RFID transceiver-based solutions can be used effectively to estimate a person's pose in real time using the proposed method.

Subjects

FEATURE extraction; RADIO frequency identification systems; MOVING average process; TOES

Publication

Electronics (2079-9292), 2023, Vol 12, Issue 2, p374

ISSN

2079-9292

Publication type

Academic Journal

DOI

10.3390/electronics12020374

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved