EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

LSTM-Based Autoencoder with Maximal Overlap Discrete Wavelet Transforms Using Lamb Wave for Anomaly Detection in Composites.

Authors

Rizvi, Syed Haider Mehdi; Abbas, Muntazir; Zaidi, Syed Sajjad Haider; Tayyab, Muhammad; Malik, Adil

Abstract

Lamb-wave-based structural health monitoring is widely acknowledged as a reliable method for damage identification, classification, localization and quantification. However, due to the complexity of Lamb wave signals, especially after interacting with structural components and defects, interpreting these waves and extracting useful information about the structure's health is still a major challenge. Deep-learning-based strategy offers a great opportunity to address such challenges as the algorithm can operate directly on raw discrete time-domain signals. Unlike traditional methods, which often require careful feature engineering and preprocessing, deep learning can automatically extract relevant features from the raw data. This paper proposes an autoencoder based on a bidirectional long short-term memory network (Bi-LSTM) with maximal overlap discrete wavelet transform (MODWT). layer to detect the signal anomaly and determine the location of the damage in the composite structure. MODWT decomposes the signal into multiple levels of detail with different frequency resolution, capturing both temporal and spectral features simultaneously. Comparing with vanilla Bi-LSTM, this approach enables the model to greatly enhance its ability to detect and locate structural damage in structures, thereby increasing safety and efficiency.

Subjects

LAMB waves; STRUCTURAL health monitoring; HOUGH transforms; DISCRETE wavelet transforms; DEEP learning; COMPOSITE structures

Publication

Applied Sciences (2076-3417), 2024, Vol 14, Issue 7, p2925

ISSN

2076-3417

Publication type

Academic Journal

DOI

10.3390/app14072925

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved