Greater variability in daily sleep efficiency predicts depression and anxiety in young adults: Estimation of depression severity using the two-week sleep quality records of wearable devices.
Objectives: Sleep disturbances are associated with both the onset and progression of depressive disorders. It is important to capture day-to-day variability in sleep patterns; irregular sleep is associated with depressive symptoms. We used sleep efficiency, measured with wearable devices, as an objective indicator of daily sleep variability. Materials and methods: The total sample consists of 100 undergraduate and graduate students, 60% of whom were female. All were divided into three groups (with major depressive disorder, mild depressive symptoms, and controls). Self-report questionnaires were completed at the beginning of the experiment, and sleep efficiency data were collected daily for 2 weeks using wearable devices. We explored whether the mean value of sleep efficiency, and its variability, predicted the severity of depression using dynamic structural equation modeling. Results: More marked daily variability in sleep efficiency significantly predicted levels of depression and anxiety, as did the average person-level covariates (longer time in bed, poorer quality of life, lower extraversion, and higher neuroticism). Conclusion: Large swings in day-to-day sleep efficiency and certain clinical characteristics might be associated with depression severity in young adults.