We found a match
Your institution may have access to this item. Find your institution then sign in to continue.
- Title
Liver-Tumor Detection Using CNN ResUNet.
- Authors
Aslam, Muhammad Sohaib; Younas, Muhammad; Sarwar, Muhammad Umar; Shah, Muhammad Arif; Khan, Atif; Uddin, M. Irfan; Ahmad, Shafiq; Firdausi, Muhammad; Zaindin, Mazen
- Abstract
Liver tumor is the fifth most occurring type of tumor in men and the ninth most occurring type of tumor in women according to recent reports of Global cancer statistics 2018. There are several imaging tests like Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and ultrasound that can diagnose the liver tumor after taking the sample from the tissue of the liver. These tests are costly and time-consuming. This paper proposed that image processing through deep learning Convolutional Neural Network (CNNs) ResUNet model that can be helpful for the early diagnose of tumor instead of conventional methods. The existing studies have mainly used the two Cascaded CNNs for liver segmentation and evaluation of Region Of Interest (ROI). This study uses ResUNet, an updated version of U-Net and ResNet Models that utilize the service of Residential blocks. We apply over method on the 3D-IRCADb01 dataset that is based on CT slices of liver tumor affected patients. The results showed the True Value Accuracy around 99% and F1 score performance around 95%. This method will be helpful for early and accurate diagnose of the Liver tumor to save the lives of many patients in the field of Biotechnology.
- Subjects
IMAGE processing; LIVER tumors; CONVOLUTIONAL neural networks; MAGNETIC resonance imaging; COMPUTED tomography; SPIRAL computed tomography
- Publication
Computers, Materials & Continua, 2021, Vol 67, Issue 2, p1899
- ISSN
1546-2218
- Publication type
Academic Journal
- DOI
10.32604/cmc.2021.015151