EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Predicting adherence to use of remote health monitoring systems in a cohort of patients with chronic heart failure.

Authors

Evangelista, Lorraine S.; Jung-Ah Lee; Ghasemzadeh, Hassan; Fallahzadeh, Ramin; Sarrafzadeh, Majid; Moser, Debra K.; Lee, Jung-Ah

Abstract

<bold>Background: </bold>It is unclear whether subgroups of patients may benefit from remote monitoring systems (RMS) and what user characteristics and contextual factors determine effective use of RMS in patients with heart failure (HF).<bold>Objective: </bold>The study was conducted to determine whether certain user characteristics (i.e. personal and clinical variables) predict use of RMS using advanced machine learning software algorithms in patients with HF.<bold>Methods: </bold>This pilot study was a single-arm experimental study with a pre- (baseline) and post- (3 months) design; data from the baseline measures were used for the current data analyses. Sixteen patients provided consent; only 7 patients (mean age 65.8 ± 6.1, range 58-83) accessed the RMS and transmitted daily data (e.g. weight, blood pressure) as instructed during the 12 week study duration.<bold>Results: </bold>Baseline demographic and clinical characteristics of users and non-users were comparable for a majority of factors. However, users were more likely to have no HF specialty based care or an automatic internal cardioverter defibrillator. The precision accuracy of decision tree, multilayer perceptron (MLP) and k-Nearest Neighbor (k-NN) classifiers for predicting access to RMS was 87.5%, 90.3%, and 94.5% respectively.<bold>Conclusion: </bold>Our preliminary data show that a small set of baseline attributes is sufficient to predict subgroups of patients who had a higher likelihood of using RMS. While our findings shed light on potential end-users more likely to benefit from RMS-based interventions, additional research in a larger sample is warranted to explicate the impact of user characteristics on actual use of these technologies.

Subjects

PATIENT compliance; PATIENT monitoring; HEART failure patients; TELEMEDICINE; MACHINE learning; COHORT analysis; HEART failure treatment; BIOTELEMETRY; CHRONIC diseases; HEART failure; IMPLANTABLE cardioverter-defibrillators; PSYCHOLOGICAL tests; RESEARCH funding; SOCIAL networks; IMPACT of Event Scale; DIAGNOSIS

Publication

Technology & Health Care, 2017, Vol 25, Issue 3, p425

ISSN

0928-7329

Publication type

Academic Journal

DOI

10.3233/THC-161279

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved