This paper explores the effects of reductant type, flux, reduction temperature, and reduction time on coal-based direct reduction of iron ore tailings. A series of tests were designed and implemented on ore tailing samples containing 14.51% of iron. The results show that the most ideal coal reductant for the direct reduction of iron ore tailings should be rich in fixed carbon and poor in volatile matters; with anthracite as reductant and CaO as flux, the tailing samples roasted and magnetically separated for 180min at 1,300 oC yielded high iron content (90.12%) and iron recovery rate (72.21%). Then, the components of the product was analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). According to the XRD, SEM and EDX spectra, the product consists of lots of metallic irons and a few α-cristobalite and magnetite. The metallic irons were obtained through direct reduction, while the α-cristobalite and magnetite came from the secondary oxidization of metallic iron. The research findings shed new light on the reduction and recovery of iron in iron ore tailings.