EBSCO Logo
Connecting you to content on EBSCOhost
Results
Title

Sensitivity Evaluation of Methods for Estimating Complier Average Causal Mediation Effects to Assumptions.

Authors

Park, Soojin; Palardy, Gregory J.

Abstract

Estimating the effects of randomized experiments and, by extension, their mediating mechanisms, is often complicated by treatment noncompliance. Two estimation methods for causal mediation in the presence of noncompliance have recently been proposed, the instrumental variable method (IV-mediate) and maximum likelihood method (ML-mediate). However, little research has examined their performance when certain assumptions are violated and under varying data conditions. This article addresses that gap in the research and compares the performance of the two methods. The results show that the distributional assumption of the compliance behavior plays an important role in estimation. That is, regardless of the estimation method or whether the other assumptions hold, results are biased if the distributional assumption is not met. We also found that the IV-mediate method is more sensitive to exclusion restriction violations, while the ML-mediate method is more sensitive to monotonicity violations. Moreover, estimates depend in part on compliance rate, sample size, and the availability and impact of control covariates. These findings are used to provide guidance on estimator selection.

Subjects

EVALUATION methodology; INSTRUMENTAL variables (Statistics); MAXIMUM likelihood statistics; KNOWLEDGE gap theory; MEDIATION; HYPOTHESIS

Publication

Journal of Educational & Behavioral Statistics, 2020, Vol 45, Issue 4, p475

ISSN

1076-9986

Publication type

Academic Journal

DOI

10.3102/1076998620908599

EBSCO Connect | Privacy policy | Terms of use | Copyright | Manage my cookies
Journals | Subjects | Sitemap
© 2025 EBSCO Industries, Inc. All rights reserved