In this study; the effects of alloyed iron powder on the properties of low density polyethylene (LDPE) polymer were examined. Alloyed iron powder (Fe) was added at rates of 3 - 6 and 9% by volume. The changes in the mechanical, physical and thermal properties of low density polyethylene by adding iron powders at different rates were examined. LDPE/Fe polymer composites were mixed in a twin-screw extruder and then granulated. Then, test samples in accordance with the standards were molded from the obtained granules on the injection machine. To determine the properties of LDPE/Fe polymer composite; Tensile strength, breaking strength, elongation at break, impact strength, hardness, density, melt flow index (MFI), thermal distortion temperature (HDT), vicat softening temperature and dynamic friction coefficient determination tests were carried out. In addition, photographs were taken with scanning electron microscopy (SEM) to determine the distribution of iron powders within the LDPE matrix. As a result of the tests, with the addition of alloyed iron powder; Hardness, density, MFI, HDT, Vicat softening temperature values increased, whereas tensile strength, breaking strength, elongation at break and impact strength values decreased. In the friction coefficient determination test, it was determined that the dynamic friction coefficient values increased as the Fe ratio and load amount increased. As a result of SEM examination, it was determined that the iron particles were distributed homogeneously.