Works matching AU Belharouak, Ilias
Results: 29
Titanium-Based Anode Materials for Safe Lithium-Ion Batteries.
- Published in:
- Advanced Functional Materials, 2013, v. 23, n. 8, p. 959, doi. 10.1002/adfm.201200698
- By:
- Publication type:
- Article
Nanoarchitecture Multi-Structural Cathode Materials for High Capacity Lithium Batteries.
- Published in:
- Advanced Functional Materials, 2013, v. 23, n. 8, p. 1070, doi. 10.1002/adfm.201200536
- By:
- Publication type:
- Article
Recycling of Lithium-Ion Batteries via Electrochemical Recovery: A Mini-Review.
- Published in:
- Batteries, 2024, v. 10, n. 10, p. 337, doi. 10.3390/batteries10100337
- By:
- Publication type:
- Article
Nanostructured Anode Material for High-Power Battery System in Electric Vehicles.
- Published in:
- Advanced Materials, 2010, v. 22, n. 28, p. 3052, doi. 10.1002/adma.201000441
- By:
- Publication type:
- Article
Organic Nonvolatile Memory: Nanostructured Anode Material for High-Power Battery System in Electric Vehicles (Adv. Mater. 28/2010).
- Published in:
- Advanced Materials, 2010, v. 22, n. 28, p. n/a, doi. 10.1002/adma.201090091
- By:
- Publication type:
- Article
Low temperature synthesis, structure and magnetic properties of Mn<sub>2</sub>[VO<sub>4</sub>F.
- Published in:
- Journal of Asian Ceramic Societies, 2017, v. 5, n. 4, p. 460, doi. 10.1016/j.jascer.2017.10.002
- By:
- Publication type:
- Article
The novel stairs-like layered compound Co<sub>5</sub>(OH)<sub>6</sub>(H<sub>2</sub>O)<sub>2</sub>[SO<sub>3</sub>]<sub>2</sub>.
- Published in:
- Zeitschrift für Kristallographie. Crystalline Materials, 2017, v. 232, n. 5, p. 349, doi. 10.1515/zkri-2016-2019
- By:
- Publication type:
- Article
Crystal structure of the alluaudite Ag<sub>2</sub>Mn<sub>3</sub>(VO<sub>4</sub>)<sub>3</sub>.
- Published in:
- Zeitschrift für Kristallographie. Crystalline Materials, 2016, v. 231, n. 5, p. 267, doi. 10.1515/zkri-2016-1930
- By:
- Publication type:
- Article
Unleashing the Potential of NASICON Materials for Solid-State Batteries.
- Published in:
- JOM: The Journal of The Minerals, Metals & Materials Society (TMS), 2024, v. 76, n. 3, p. 1088, doi. 10.1007/s11837-023-06291-7
- By:
- Publication type:
- Article
Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries.
- Published in:
- Nature Communications, 2015, v. 6, n. 4, p. 6865, doi. 10.1038/ncomms7865
- By:
- Publication type:
- Article
Lithium Iron Aluminum Nickelate, LiNi<sub>x</sub>Fe<sub>y</sub>Al<sub>z</sub>O<sub>2</sub>—New Sustainable Cathodes for Next‐Generation Cobalt‐Free Li‐Ion Batteries.
- Published in:
- Advanced Materials, 2020, v. 32, n. 34, p. 1, doi. 10.1002/adma.202002960
- By:
- Publication type:
- Article
Special proceedings of the Symposium A: 'Advances in energy storage systems: lithium batteries, supercapacitors and beyond', during ICMAT 2015, June 28-July 3, Singapore.
- Published in:
- 2016
- By:
- Publication type:
- Editorial
Paving the Way for Using Li<sub>2</sub>S Batteries.
- Published in:
- ChemSusChem, 2014, v. 7, n. 9, p. 2457, doi. 10.1002/cssc.201402177
- By:
- Publication type:
- Article
Sodium Rich Vanadium Oxy‐Fluorophosphate – Na<sub>3.2</sub>Ni<sub>0.2</sub>V<sub>1.8</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>2</sub>O – as Advanced Cathode for Sodium Ion Batteries.
- Published in:
- Advanced Science, 2023, v. 10, n. 22, p. 1, doi. 10.1002/advs.202301091
- By:
- Publication type:
- Article
Na<sub>3</sub>Zr<sub>2</sub>Si<sub>2</sub>PO<sub>12</sub> Solid Electrolyte Membrane for High‐Performance Seawater Battery.
- Published in:
- Advanced Science, 2023, v. 10, n. 17, p. 1, doi. 10.1002/advs.202300920
- By:
- Publication type:
- Article
Synthesis, structural characterization, and hydrogen bonds of Co<sub>9</sub>(OH)<sub>14</sub>[SO<sub>4</sub>]<sub>2</sub>.
- Published in:
- Zeitschrift für Naturforschung B: A Journal of Chemical Sciences, 2017, v. 72, n. 7, p. 505, doi. 10.1515/znb-2017-0046
- By:
- Publication type:
- Article
High-energy cathode material for long-life and safe lithium batteries.
- Published in:
- Nature Materials, 2009, v. 8, n. 4, p. 320, doi. 10.1038/nmat2418
- By:
- Publication type:
- Article
Battery Electrolyte Design for Electric Vertical Takeoff and Landing (eVTOL) Platforms.
- Published in:
- Advanced Energy Materials, 2024, v. 14, n. 29, p. 1, doi. 10.1002/aenm.202400772
- By:
- Publication type:
- Article
Next‐Generation Cobalt‐Free Cathodes – A Prospective Solution to the Battery Industry's Cobalt Problem.
- Published in:
- Advanced Energy Materials, 2022, v. 12, n. 9, p. 1, doi. 10.1002/aenm.202103050
- By:
- Publication type:
- Article
Single‐Ion Conducting Polymer Electrolytes for Solid‐State Lithium–Metal Batteries: Design, Performance, and Challenges.
- Published in:
- Advanced Energy Materials, 2021, v. 11, n. 14, p. 1, doi. 10.1002/aenm.202003836
- By:
- Publication type:
- Article
Direct Recycling of Spent NCM Cathodes through Ionothermal Lithiation.
- Published in:
- Advanced Energy Materials, 2020, v. 10, n. 30, p. 1, doi. 10.1002/aenm.202001204
- By:
- Publication type:
- Article
Enhancing the Electrochemical Performance of Aqueous Processed Li‐Ion Cathodes with Silicon Oxide Coatings.
- Published in:
- ChemSusChem, 2023, v. 16, n. 16, p. 1, doi. 10.1002/cssc.202300350
- By:
- Publication type:
- Article
Sustainable Direct Recycling of Lithium‐Ion Batteries via Solvent Recovery of Electrode Materials.
- Published in:
- ChemSusChem, 2020, v. 13, n. 21, p. 5664, doi. 10.1002/cssc.202001479
- By:
- Publication type:
- Article
Temperature‐dependent Battery Performance of a Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F<sub>3</sub>@MWCNT Cathode and In‐situ Heat Generation on Cycling.
- Published in:
- ChemSusChem, 2020, v. 13, n. 18, p. 5031, doi. 10.1002/cssc.202001268
- By:
- Publication type:
- Article
Probing the Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> Interface Upon Lithium Uptake by Operando Small Angle Neutron Scattering.
- Published in:
- ChemSusChem, 2020, v. 13, n. 14, p. 3654, doi. 10.1002/cssc.202000802
- By:
- Publication type:
- Article
Lithium-Sulfur Batteries: High-Energy, High-Rate, Lithium-Sulfur Batteries: Synergetic Effect of Hollow TiO<sub>2</sub>-Webbed Carbon Nanotubes and a Dual Functional Carbon-Paper Interlayer (Adv. Energy Mater. 1/2016).
- Published in:
- Advanced Energy Materials, 2016, v. 6, n. 1, p. n/a, doi. 10.1002/aenm.201501480
- By:
- Publication type:
- Article
High-Energy, High-Rate, Lithium-Sulfur Batteries: Synergetic Effect of Hollow TiO<sub>2</sub>-Webbed Carbon Nanotubes and a Dual Functional Carbon-Paper Interlayer.
- Published in:
- Advanced Energy Materials, 2016, v. 6, n. 1, p. n/a, doi. 10.1002/aenm.201501480
- By:
- Publication type:
- Article
Structural and Electrochemical Study of Al<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub> Coated Li<sub>1.2</sub>Ni<sub>0.13</sub>Mn<sub>0.54</sub>Co<sub>0.13</sub>O<sub>2</sub> Cathode Material Using ALD.
- Published in:
- Advanced Energy Materials, 2013, v. 3, n. 10, p. 1299, doi. 10.1002/aenm.201300269
- By:
- Publication type:
- Article
Role of Polysulfides in Self-Healing Lithium-Sulfur Batteries.
- Published in:
- Advanced Energy Materials, 2013, v. 3, n. 7, p. 833, doi. 10.1002/aenm.201200990
- By:
- Publication type:
- Article